
.

Aegis
A Project Change Supervisor

User Guide

Peter Miller
millerp@canb.auug.org.au

User Guide Aegis

.

DEDICATIONS

This user guide is dedicated to my wife
Mary Therese Miller

for all her love and support
despite the computers.

And to my grandmother
Jean Florence Pelham

1905 — 1992
Always in our hearts.

This document describes Aegis version 4.24
and was prepared 10 March 2008.

This document describing the Aegis program, and the Aegis program itself, are
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

This program is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this pro-
gram. If not, see <http://www.gnu.org/licenses/>.

Page 2 (bl/lib/en/user-guide/c1.0.so) Peter Miller

Aegis UserGuide

Table of Contents

1. Introduction . 3
1.1. Year 2000 Status . 3
1.2. What does aegis do?. 3
1.3. Why use aegis? . 3
1.4. How to use this manual . 4
1.5. GNU GPL . 4

2. How Aegis Works . 5
2.1. The Model . 5

2.1.1. The Baseline. 5
2.1.2. The Change Mechanism. 6
2.1.3. Change States. 6
2.1.4. The Software Engineers. 8
2.1.5. The Change Process. 10

2.2. Philosophy . 13
2.2.1. Development . 13
2.2.2. Post Development . 13
2.2.3. Minimalism . 13
2.2.4. Overlap . 13
2.2.5. Design Goals . 13

2.3. Security . 14
2.4. Scalability . 14
2.5. When (not) to use Aegis . 15

2.5.1. Building . 15
2.5.2. Testing . 15
2.5.3. Reviewing . 15

2.6. Further Work . 16
2.6.1. Code Coverage Tool . 16
2.6.2. Virtual File System. 16

3. The Change Development Cycle . 17
3.1. The Developer . 18

3.1.1. Before You Start . 18
3.1.2. The First Change. 18
3.1.3. The Second Change. 25
3.1.4. The Third and Fourth Changes. 30
3.1.5. Developer Command Summary. 42

3.2. The Reviewer . 43
3.2.1. Before You Start . 43
3.2.2. The First Change. 43
3.2.3. The Second Change. 43
3.2.4. Reviewer Command Summary. 45

3.3. The Integrator . 46
3.3.1. Before You Start . 46
3.3.2. The First Change. 46
3.3.3. The Other Changes. 47
3.3.4. Integrator Command Summary. 48
3.3.5. Minimum Integrations . 48

3.4. The Administrator. 49
3.4.1. Before You Start . 49
3.4.2. The First Change. 49
3.4.3. The Second Change. 51
3.4.4. The Third Change. 51

Peter Miller (bl/lib/en/user-guide/main.ms) Page mi

User Guide Aegis

3.4.5. The Fourth Change. 51
3.4.6. Administrator Command Summary. 51

3.5. What to do Next . 53
3.6. Common Questions . 53

3.6.1. Insulation. 53
3.6.2. Partial Check-In. 54
3.6.3. Multiple Active Branches . 54
3.6.4. Collaboration . 54

4. The History Tool . 56
4.1. History File Names. 56
4.2. Interfacing . 56

4.2.1. history_create_command. 56
4.2.2. history_get_command. 56
4.2.3. history_put_command. 56
4.2.4. history_query_command. 56
4.2.5. history_content_limitation 56
4.2.6. history_tool_trashes_file . 57
4.2.7. Quoting Filenames. 57
4.2.8. Templates . 57

4.3. Using aesvt . 58
4.3.1. history_create_command. 58
4.3.2. history_put_command. 58
4.3.3. history_get_command. 58
4.3.4. history_query_command. 58
4.3.5. Templates . 58
4.3.6. Binary Files. 58

4.4. Using SCCS. 59
4.4.1. history_create_command. 59
4.4.2. history_get_command. 59
4.4.3. history_put_command. 59
4.4.4. history_query_command. 59
4.4.5. Templates . 59
4.4.6. Binary Files. 60

4.5. Using RCS . 61
4.5.1. history_create_command. 61
4.5.2. history_get_command. 61
4.5.3. history_put_command. 61
4.5.4. history_query_command. 62
4.5.5. merge_command . 62
4.5.6. Referential Integrity . 62
4.5.7. Templates . 63
4.5.8. Binary Files. 63
4.5.9. history_put_trashes_files . 63

4.6. Using fhist . 64
4.6.1. history_create_command. 64
4.6.2. history_get_command. 64
4.6.3. history_put_command. 64
4.6.4. history_query_command. 64
4.6.5. Templates . 64
4.6.6. Capabilities . 64
4.6.7. Binary Files. 65

4.7. Detecting History File Corruption. 66
4.7.1. General Method. 66
4.7.2. Configuration Commands 66

Page mii (bl/lib/en/user-guide/main.ms) Peter Miller

Aegis UserGuide

4.7.3. An Alternative . 66
4.7.4. Aegis’ Database. 67

5. The Dependency Maintenance Tool . 68
5.1. Required Features. 68

5.1.1. View Paths . 68
5.1.2. Dynamic Include File Dependencies. 68

5.2. Development Directory Style . 69
5.2.1. View Path . 69
5.2.2. Link the Baseline . 70
5.2.3. Copy All Sources . 70
5.2.4. Obsolete Features. 71

5.3. Using Cook . 72
5.3.1. Invoking Cook . 72
5.3.2. The Recipe File. 72
5.3.3. The Recipe for C . 73
5.3.4. The Recipe for Yacc . 74
5.3.5. The Recipe for Lex . 74
5.3.6. Recipes for Documents. 74
5.3.7. Templates . 74

5.4. Using Cake . .75
5.4.1. Invoking Cake . 75
5.4.2. The Rules File . 75
5.4.3. The Rule for C. 75
5.4.4. The Rule for Yacc . 76
5.4.5. The Rule for Lex . 76
5.4.6. Rules for Documents. 76

5.5. Using Make . .77
5.5.1. Invoking Make . 77
5.5.2. The Rule File . 77
5.5.3. The Rule for C. 78
5.5.4. The Rule for Yacc . 78
5.5.5. The Rule for Lex . 78
5.5.6. Rules for Documents. 79
5.5.7. Other Makes . 79
5.5.8. Templates . 79
5.5.9. GNU Make VPATH Patch 79
5.5.10. GNU Make’s VPATH+ . 79

5.6. Building Executable Scripts. 80
5.7. GNU Autoconf . 80

5.7.1. The Sources. 80
5.7.2. Building . 80
5.7.3. Tesing . 81
5.7.4. An Optimization . 81
5.7.5. Signed-off-by . 81
5.7.6. Importing the Next Upstream Tarball 82
5.7.7. Importing the Next Upstream Patch 82

5.8. No Build Required. 82
5.8.1. Why This May Not Be Such A Good Idea. 83

6. The Difference Tools . 84
6.1. Binary Files . 84
6.2. Interfacing . 84

6.2.1. diff_command . 84
6.2.2. merge_command . 84

6.3. When No Diff is Required . 85

Peter Miller (bl/lib/en/user-guide/main.ms) Page miii

User Guide Aegis

6.4. Using diff and merge . 86
6.4.1. diff_command . 86
6.4.2. merge_command . 86

6.5. Using fhist . 86
6.5.1. diff_command . 86
6.5.2. merge_command . 86

7. The Project Attributes . 88
7.1. Description and Access. 88
7.2. Notification Commands . 88

7.2.1. Notification by email . 88
7.2.2. Notification by USENET. 89

7.3. Exemption Controls . 89
7.3.1. One Person Projects. 89
7.3.2. Two Person Projects . 89
7.3.3. Larger Projects. 90
7.3.4. RSS Feeds . 90

8. Testing . 92
8.1. Why Bother? . 92

8.1.1. Projects for which Aegis’ Testing is Most Suitable. 92
8.1.2. Projects for which Aegis’ Testing is Useful. 92
8.1.3. Projects for which Aegis’ Testing is Least Useful. 93

8.2. Writing Tests . 95
8.2.1. Contributors . 95
8.2.2. General Guidelines. 95
8.2.3. Bourne Shell. 96
8.2.4. Perl . 97
8.2.5. Batch Testing . 99

9. Branching. 100
9.1. How To Use Branching . 100
9.2. Transition Using aenrls . 100
9.3. Cross Branch Merge . 101
9.4. Multiple Branch Development . 101
9.5. Hierarchy of Projects . 101

9.5.1. Fundamentals . 101
9.5.2. Incremental Integration . 101
9.5.3. Super-Project Branching. 102
9.5.4. Super-Project Testing . 102
9.5.5. The Next Cycle. 102
9.5.6. Bug Fixing . 102

9.6. Conflict Resolution. 102
9.6.1. Cross Branch Merge . 103
9.6.2. Insulation. 103

9.7. Ending A Branch . 103
10. Tips and Traps . 105

10.1. Renaming Include Files. 105
10.2. Symbolic Links . 105
10.3. User Setup. 105

10.3.1. The .cshrc or .profile files 105
10.3.2. The AEGIS_PATH environment variable 105
10.3.3. The .aegisrc file . 106
10.3.4. The defaulting mechanism. 106

10.4. The Project Owner . 106
10.5. USENET Publication Standards. 106

10.5.1. CHANGES. 106

Page miv (bl/lib/en/user-guide/main.ms) Peter Miller

Aegis UserGuide

10.5.2. MANIFEST . 106
10.5.3. Makefile . 106
10.5.4. patchlevel.h . 106
10.5.5. Building Patch Files. 106

10.6. Heterogeneous Development . 108
10.6.1. Projectaegis.confFile . 108
10.6.2. Change Attribute . 108
10.6.3. Network Files. 109
10.6.4. DMT Implications . 109
10.6.5. Test Implications. 109
10.6.6. Cross Compiling. 110
10.6.7. File Version by Architecture 110

10.7. Reminders. 110
10.7.1. Awaiting Development . 110
10.7.2. Being Developed . 110
10.7.3. Being Reviewed . 110
10.7.4. Awaiting Integration . 110

11. Geographically Distributed Development 111
11.1. Introduction . 111

11.1.1. Risk Reduction . 111
11.1.2. What to Send. 111
11.1.3. Methods and Topologies 111
11.1.4. The Rest of this Chapter. 112

11.2. Manual Operation. 112
11.2.1. Manual Send. 112
11.2.2. Sending Baselines . 112
11.2.3. Sending Branches. 112
11.2.4. Manual Receive . 113
11.2.5. Getting Started. 113

11.3. Sneaker Net . 113
11.4. Automatic Operation. 114

11.4.1. Sending. 114
11.4.2. Receiving . 114

11.5. World Wide Web . 114
11.5.1. Server . 114
11.5.2. Browser . 114
11.5.3. Hands-Free Tracking . 114

11.6. Security. 115
11.6.1. Trojan Horses. 115
11.6.2. PGP . 115
11.6.3. Sorcerer’s Apprentice . 115

11.7. Patches . 116
11.7.1. Send. 116
11.7.2. Receive . 116
11.7.3. Limitations. 116

12. Further Reading . 118
12.1. Software Configuration Management. 118
12.2. Reviewing . 118

13. Appendix A: New Project Quick Reference. 119
13.1. Create the Project. 119

13.1.1. Add the Staff . 119
13.1.2. Project Attributes . 119

13.2. Create Change One. 119
13.3. Develop Change One. 119

Peter Miller (bl/lib/en/user-guide/main.ms) Page mv

User Guide Aegis

13.4. Review The Change . 120
13.5. Integrate the Change. 120
13.6. What to do Next . 121

14. Appendix B: Glossary . 122
15. Appendix D: Why is Aegis Set-Uid-Root? 124

15.1. Examples . 124
15.2. Source Details. 125

16. Appendix I: Internationalization and Localization. 126
16.1. The “.po” Files. 126
16.2. Checking the Code . 126
16.3. Translators Welcome . 126

Page mvi () Peter Miller

Aegis UserGuide

1. Intr oduction

Aegis is a CASE tool with a difference. Inthe
spirit of theUNIX® Operating System, Aegis is a
small component designed to work with other
programs.

Many CASE systems attempt to provide every-
thing, from bubble charts to source control to
compilers. Usersare trapped with the compo-
nents supplied by the CASE system, and if you
don’t like one of the components (it may be too
limited, for instance), then that is just tough.

In contrast,UNIX provides many components of a
CASE system - compilers, editors, dependency
tools (such as make), source control (such as
SCCS). You may substitute the tool of your
choice - gcc, jove, cake, rcs (to name a few) if you
don’t like the ones supplied with the system.

Aegis adds to this list with software configuration
management (SCM), and consistent withUNIX

philosophy, Aegis does not dictate the choice of
any of the other tools (although it may stretch
them to their limits).

1.1. Year 2000 Status

Aegis does not suffer from Year 2000 problems.

• Aegis stores dates internally in Unix style (i.e.
seconds offset), so internal storage of times and
dates does not suffer from any Y2K problems.

• Aegis always uses the ANSI C standardstrf-
time function to display times and dates.(This
assumes that your vendor has supplied a compli-
ant strftime .) This means that displaying
dates does not assume fixed field widths, nor will
it display the year 2000 as “100”.

• There is no user-input of years at any time, so
there is no issue surrounding “guessing” the cen-
tury.

1.2. Whatdoes aegis do?

Just what is software configuration management?
This question is sufficiently broad as to require a
book in answer. In essence, the aegis program is
a project change supervisor. It provides a frame-
work within which a team of developers may
work on many changes to a program indepen-
dently, and the aegis program coordinates inte-
grating these changes back into the master source
of the program, with as little disruption as possi-
ble. Resolutionof contention for source files, a
major headache for any project with more than
one developer, is one of the aegis program’s major
functions.

It should be noted that the aegis program is a
developer’s tool, in the same sense as make or
RCS are developer’s tools. It is not a manager’s
tool - it does not provide progress tracking or help
with work allocation.

1.3. Why use aegis?

So why should you use the aegis program?The
aegis program uses a particular model of the
development of software projects. This model
has a master source (or baseline) of a project, con-
sisting of several (possibly several hundred) files,
and a team of developers creating changes to be
made to this baseline. When a change is com-
plete, it is integrated with the baseline, to become
the new baseline. Eachchange must be atomic
and self-contained, no change is allowed to cause
the baseline to cease to work. "Working" is
defined as passing its own tests. The tests are
considered part of the baseline.Aegis provides
support for the developer so that an entire copy of
the baseline need not be taken to change a few
fi les, only those files which are to be changed
need to be copied.

The win in using the aegis program is that there
areO(n) interactions between developers and the
baseline. Contrastthis with a master source
which is being edited directly by the developers -
there isO(n!) interactions between developers -
this makes adding "just one" more developer a
potential disaster.

Another win is that the project baseline always
works. Always having a working baseline means
that a version is always available for demonstra-
tions, or those "pre-release snapshots" we are
always forced to provide.

The above advantages are all very well - for man-
agement types.Why should Joe Average Pro-
grammer use the aegis program? Recall that RCS
provides file locking, but only for one file at a
time. Theaegis program provides the file lock-
ing, atomically, for the set of files in the change.
Recall also that correct RCS usage locks the file
the instant you start editing it. This makes popu-
lar files a project bottleneck.The aegis program
allows concurrent editing, and a resolution mech-
anism just before the change must be integrated,
meaning fewer delays for J.A.Programmer.

Peter Miller (bl/lib/en/user-guide/c1.4.so) Page 3

User Guide Aegis

1.4. How to use this manual

This manual assumes the reader is already famil-
iar with the UNIX operating system, and with
developing software using theUNIX operating sys-
tem and the tools available; terms such asRCS
andSCCSandmake(1) are not explained.

There is also the assumption that the reader is
familiar with the issues surrounding team devel-
opment of software; coordination and multiple
version issues, for example, are not explained.

This manual is broken into a number of sections.

Chapter 2
describes how aegis works and some of the
reasoning behind the design and implemen-
tation of the aegis program. Look here for
answers to "Why does it..." questions.

Chapter 3
is a worked example of how particular users
interact with the aegis program. Look here
for answers to "How do I..." questions.

Chapter 4
is a discussion of how aegis interacts with
the History Tool, and provides templates
and suggestions for history tools known to
work with aegis.

Chapter 5
is a discussion of how aegis interacts with
the Dependency Maintenance Tool (DMT),
and provides templates and suggestions for
DMTs known to work with aegis.

Chapter 6
is a discussion of how aegis interacts with
the Difference Tools, and provides tem-
plates and suggestions for difference tools
known to work with aegis.

Chapter 7
describes the project attributes and how the
various parameters may be used for particu-
lar projects.

Chapter 8
describes managing tests and testing with
Aegis.

Chapter 9
describes the branching mechanism used in
Aegis.

Chapter 10
is a collection of helpful hints on how to
use aegis effectively, based on real-world
experience. Thisis of most use when ini-
tially placing projects under the supervision
of the aegis program.

Chapter 11
describes how to manage geographically
distributed development using Aegis.

Appendix A
is a quick reference for placing an existing
project under aegis.

Appendix B
is a glossary of terms.

Appendix D
is a description of why Aegis must be set-
uid-root, for system administrators who are
concerned about the security issues.

Appendix I
is a brief look at internationalization and
localization if Aegis.

1.5. GNUGPL

Aegis is distributed under the terms and condi-
tions of the GNU General Public License.Pro-
grams which are developed using Aegis are not
automatically subject to the GNU GPL.Only
programs which are derivative works based on
GNU GPL code are automatically subject to the
GNU GPL. We still encourage software authors
to distribute their work under terms like those of
the GNU GPL, but doing so is not required to use
Aegis.

Page 4 (bl/lib/en/user-guide/c7.0.so) Peter Miller

Aegis UserGuide

2. How Aegis Works

Before you will be able to exploit Aegis fully, you
will need to know what Aegis does and why.

The Aegis program provides a change control
mechanism and a repository, a subset of the func-
tionality which CASE vendors call Software Con-
figuration Management (SCM). In order to fit
into a software engineering environment, or any
place software iswritten, Aegis needs a clearly
defined place in the scheme of things.

This chapter describes the model of the software
development process embodied in the Aegis pro-
gram, some of the deliberate design decisions
made for Aegis, some of the things Aegis will and
wont do for you, and the situations where Aegis is
most and least useful.

2.1. TheModel

The model of the software development process
used by Aegis evolved and grew with time in a
commercial software development environment,
and it has continued to be used and developed.

The model described here is generic, and can be
adapted in a variety of ways. Thesewill be
described at the relevant points in the text.

2.1.1. TheBaseline

Most CASE systems revolve around a repository:
a place wherestuff is kept. Thisstuff is the raw
material that is processed in some way to produce
the final product, whatever that may be.This stuff
is the preferred form for editing or composing or
whatever.

In the Aegis program, the repository is known as
the baselineand the units ofstuff are UNIX fi les.
The Aegis program makes no distinction between
text and binary files, so both are supported.

The history mechanism which must be included
in any repository function is not provided by the
Aegis program. It is instead provided by some
other per-project configurable software, such as
RCS. Thismeans that the user may select the his-
tory tool most suited to any giv en project. It also
means that Aegis is that much smaller to test and
maintain.

The structure of the baseline is dictated by the
nature of each project. The Aegis program
attempts to make as few arbitrary rules as possi-
ble. There is one mandatory file in the your
project baseline. The mandatory file is called
aegis.confby default, and contains the per-project
configuration information.The name of this file

may be changed if you want to call it something
different. Itios also common (though not manda-
tory, and the name may be changed) to have a
directory calledtestwhich contains all of the test
scripts. Thecontents and structure of thetest
directory (or whatever you call it) are controlled
by a test filename pattern you supply to Aegis.
Tests are treated just like any other source file,
and are subject to the same process.

The baseline in Aegis has one particular attribute:
it always works. It is always there to show off to
visiting big-wigs, it is always there to grab a copy
of and ship a "pre-release snapshot" to some
overly anxious customer, it is always there to let
upper management "touch and feel" the progress
being made towards the next release.

You may claim that "works" is comfortably fuzzy,
but it is not. Thebaseline contains not only the
source of a project, but also the tests for a project.
Tests are treated just like any other source file,
and are subject to the same process.A baseline is
defined to "work" if and only if it passes all of its
own tests. TheAegis program has mandatory
testing, to ensure that all changes to the baseline
are accompanied by tests, and that those tests
have been run and are known to pass.This means
that no change to the baseline may result in the
baseline ceasing to work1.

The model may be summarized briefly: it consists
of abaseline(master source), updated through the
agency of an integrator, who is in turn fed
changesby a team ofdevelopers. These terms
will be explained in the following sections.See
figure 1 for a picture of how files flow around the
system.

The baseline is a set of files including the source
fi les for a projects, and also all derived files (such
as generated code, binary files from the compiler,
etc), and all of the tests.Tests are treated just like
any other source file, and are subject to the same
process. Allfi les in the baseline are consistent
with each other.

Thus the baseline may be considered to be the
closureof the source files, in mathematical terms.
That is, it is the source files and all implications
flowing from those source files, such as object
fi les and executables. Allfi les in the baseline are
consistent with each other; this means that

1 Well, mostly. It is possible for this restriction
to be relaxed if you feel there are special circum-
stances for a particular change.The danger is that a
change will be integrated with the baseline when
that change is not actually of acceptable quality.

Peter Miller (bl/lib/en/user-guide/c7.1.so) Page 5

User Guide Aegis

baseline

development
directory

integrator

integrate
begin

integration
directory

integrate
pass

development
directory

Figure 1: Flow of Files through the Model

development builds can take object files from the
baseline rather than rebuild them within the devel-
opment directory.

The baseline is readable by all staff, and usually
writable by no-one.When it is necessary to write
to the baseline, this is done by Aegis, as will be
shown below.

In many ways, the baseline may be thought of as
a database, and all derived files are projections
(views) of the source files. Passing its own tests
may be thought of as input validation of fields.
This is a powerful concept, and indeed the imple-
mentation of the Aegis program performs many
of the locking and synchronization tasks
demanded of a database engine.

All of the files forming this database are text files.
This means that they may be repaired with an
ordinary text editor, should remedial action be
necessary. The format is documented in section 5
of the reference manual. Should you wish to per-
form some query not yet available in Aegis, the
fi les are readily accessible to members of the

appropriateUNIX group.

Tests are treated just like any other source file,
and are subject to the same process.

2.1.2. TheChange Mechanism

Any changes to the baseline are made by atomic
increments, known (unoriginally) as "changes".
A change is a collection of files to be added to,
modified in, or deleted from, the baseline.These
fi les must all be so altered simultaneously for the
baseline to continue to "work".2

For example, if the calling interface to a function
were changed in one file, all calls to that function
in any other file must also change for the baseline
to continue to work. All of the files must be
changed simultaneously, and thus must all be
included in the one change.Other files which
would logically be included in such an change
include the reference manual entry for the func-
tion, the design document relating to that area of
functionality, the relevant user documentation,
tests would have to be included for the functional-
ity, and existing tests may need to be revised.

Changes must be accompanied by tests.These
tests will either establish that a bug has been fixed
(in the case of a bug fix) or will establish that new
functionality works (in the case of an enhance-
ment).

Tests are shell scripts, and as such are capable of
testing anything which has functionality accessi-
ble from the command line.The ability to run
background processes allows even client-server
models to be tested.Tests are thus text files, and
are treated as source files; they may be modified
by the same process as any other source file.
Tests usually need to be revised as a project grows
and adapts to changing requirements, or to be
extended as functionality is extended. Tests can
ev en be deleted if the functionality they test has
been deleted; tests are deleted by the same pro-
cess as any other source file.

2.1.3. ChangeStates

As a change is developed using Aegis, it passes
through six states.Many Aegis commands relate
to transitions between these states, and Aegis per-
forms any validation at these times.

2 Whether to allow sev eral logically independent
changes to be included in the one change is a policy
decision for individual projects to make, and is not
dictated by the Aegis program. It is a responsibility
of reviewers to ensure that all new and changed
functionality is tested and documented.

Page 6 (bl/lib/en/user-guide/c7.1.so) Peter Miller

Aegis UserGuide

The six states of a change are described as fol-
lows, although the various state transitions, and
their conditions, will be described later.

2.1.3.1. Awaiting Development

A change is in this state after it has been created,
but before it has been assigned to a developer.
This state can’t be skipped: a change can’t be
immediately assigned to a developer by an admin-
istrator, because this disempowers the staff.

The Aegis program is not a progress tracking tool,
nor is it a work scheduling tool; plenty of both
already exist.

2.1.3.2. BeingDeveloped

A change is in this state after it has been assigned
to a developer, by the developer. This is the coal
face: all development is carried out in this state.
Files can be edited in no other state, this particu-
larly means that only developers can develop,
reviewers and integrators only have the power to
veto a change.Staff roles will be described more
fully in a later section.

To advance to the next state, the change must
build successfully, it must have tests, and it must
pass those tests.3

The new tests must alsofail against the baseline;
this is to establish that tests for bug-fixes actually
reproduce the bug and then demonstrate that it is
gone. New functionality added by a change will
naturally fail when tested in the old baseline,
because it is not there.

When these conditions are met, the Aegis pro-
gram marks all of the changes files as locked,
simultaneously. If any one of them is already
locked, you can’t leave thebeing developedstate,
because the file is part of a change which is some-
where betweenbeing reviewed and being inte-
grated.

If any one of them is out-of-date with respect to
the baseline, the lock is not taken, either. Locking
the files at this state transition means that popular
fi les may be modified simultaneously in many
changes, but that only differences to the latest ver-
sion are ever submitted for integration. TheAegis
program provides a mechanism, described later,
for bringing out-of-date files in changes up-to-

3 It is possible for these testing requirements to
be waived on either a per-project or per-change
basis. How is described in a later section.The
power to waive this requirement is not automati-
cally granted to developers, as experience has
shown that it is usually abused.

date without losing the edits made by the devel-
oper.

2.1.3.3. Awaiting Review

The default configuration for an Aegis project
does not use this state, because for small-ish
projects it can be tedious.For larger projects,
however, it assists in coordinating reviewers when
you use email notification that a review is
required to several potential reviewers.

To enable this state, you need to change the
develop_end_actionfield of the project attributes.
Seeaepa(1) for more information, ortkaepa(1)
for a GUI interface.

It is also possible, by a different setting of the
same project attribute, to skip the code review
step altogether. This can be of benefit to one-per-
son projects where independent code review
would be impossible.

The rest of this description will assume theawait-
ing review state is not being used, but code
reviewsare being used, to simplify matters.Once
you are more familiar with Aegis, enabling the
use of theawaiting review state will be simple
and will behave intuitively.

2.1.3.4. BeingReviewed

A change is in this state after a developer has
indicated that development is complete.The
change is inspected, usually by a second party (or
parties), to ensure that it matches the change
description as to what it is meant to be doing, and
meets other project or company standards you
may have.

The style of review, and who may review, is not
dictated by the Aegis program. A number of
alternative hav ebeen observed:

• You may have a single person who coordinates
review panels of, say, 4 peers, with this coordina-
tor the only person allowed to sign-off review
passes or fails.

• You may allow any of the developers to review
any other developer’s changes.

• You may require that only senior staff, familiar
with large portions of the code, be allowed to
review.

The Aegis program enforces that a developer may
not review their own code.This ensures that at
least one person other than the developer has
scrutinized the code, and eliminates a rather obvi-
ous conflict of interest.It is possible to turn this

Peter Miller (bl/lib/en/user-guide/c7.1.so) Page 7

User Guide Aegis

requirement off on a per-project basis, but this is
only desirable for projects with a one person team
(or maybe two). TheAegis program has no way
of knowing that the user passing a review has
actually looked at, and understood, the code.

The reviewer knows certain things about a change
for it to reach this state: it has passed all of the
conditions required to reach this state.The
change compiles, it has tests and it passes those
tests, and the changes are to the current version of
the baseline. The reviewer may thus concentrate
on issues of completeness, implementation, and
standards - to name only a few.

2.1.3.4.1. CustomizingCode Review Policy

It is possible to require more than one reviewer
for a change. By setting there view_policy_-
commandof the project configuration file, you
can pass a shell script (or other command) the rel-
evant change details, and the exit status will be
used to determine of the change advances to the
awaiting integration state, or requires additional
code reviewers first.

Because it is a program, it is possible to imple-
ment almost any policy you can think of, includ-
ing particular reviewers for particular areas of
code, or that there must be 3 different reviewers,
etc.

2.1.3.5. Awaiting Integration

A change is in this state after a reviewer has indi-
cated that a change is acceptable to the
reviewer(s). Thisis essentially a queue, as there
may be many dev elopers, but only one integration
may proceed at any one time.

The issue of one integration at a time is a philo-
sophical one: all of the changes in the queue are
physically independent; because of theDevelop
End locking rules they do not have intersecting
sets of files. The problem comes when one
change would break another, in these cases the
integrator needs to know which to bounce and
which to accept.Integrating one change at a time
greatly simplifies this, and enforces the "only
change one thing at a time" maxim, occasionally
at the expense of integrator throughput.

2.1.3.6. BeingIntegrated

A change is in this state when the integration of
the change back into the baseline is commenced.
A (logical) copy of the baseline is taken, and the
change is applied to that copy. In this state, the
change is compiled and tested once again.

The additional compilation has two purposes: it
ensures that the successful compile performed by
the developer was not a fluke of the developer’s
environment, and it also allows the baseline to be
the closure of the sources files. Thatis, all of the
implications flowing from the source files, such
as object files and linked programs or libraries.It
is not possible for Aegis to know which files these
are in the development directory, because Aegis is
decoupled from the build mechanism (this will
discussed later).

To advance to the next state, the integration copy
must have been compiled, and the tests included
in the change must have been run and passed.

The integrator also has the power of veto. A
change may fail an integration because it fails to
build or fails tests, and also just because the inte-
grator says so.This allows thebeing integrated
state to be another review state, if desired.The
being integratedstate is also the place to monitor
the quality of reviews and reviewers.

Should a faulty change manage to reach this
point, it is to be hoped that the integration pro-
cess, and the integrator’s sharp eyes, will detect it.

While most of this task is automated, this step is
necessary to ensure that some strange quirk of the
developer’s environment was not responsible for
the change reaching this stage.The change is
built once more, and tested once more. If a
change fails to build or test, it is returned to the
developer for further work; the integrator may
also choose to fail it for other reasons. If the inte-
grator passes that change, the integrated version
becomes the new baseline.

2.1.3.7. Completed

A change reaches this state when integration is
complete. The(logical) copy of the baseline used
during integration has replaced the previous copy
of the baseline, and the file histories have been
updated. Oncein this state, a change may never
leave it, unlike all other states.

If you wish to remove a change which is in this
state from the baseline, you will have to submit
another change.

2.1.4. TheSoftware Engineers

The model of software development used by
Aegis has four different roles for software engi-
neers to fill. Thesefour roles may be overlapping
sets of people, or be distinct, as appropriate for
your project.

Page 8 (bl/lib/en/user-guide/c7.1.so) Peter Miller

Aegis UserGuide

2.1.4.1. Developer

This is the coal-face. Thisrole is where almost
ev erything is done. This is the only role allowed
to edit a source file of a project.

Most staff will be developers. Thereis nothing
stopping a developer from also being an adminis-
trator, except for the possible conflict of interests
with respect to testing exemptions.

A dev eloper may edit many of the attributes of a
change while it is being developed. This is
mostly useful to update the description of the
change to say why it was done and what was actu-
ally done. A dev eloper may not grant testing
exemptions (but they may be relinquished).

2.1.4.2. Reviewer

The role of the reviewer is to check a developer’s
work. This review may consist of a peer examin-
ing the code, or it may be handled by a single
member of staff setting up and scheduling multi-
person review panels. TheAegis program does
not mandate what style of review, it only requires
that a reviewer pass or fail each change. If it
passes, an integrator will handle it next, otherwise
it is returned to the developer for further work.

In a large team, the reviewers are usually selected
from the more senior members of the team,
because of their depth of experience at spotting
problems, but also because this is an opportunity
for more senior members of staff to coach juniors
on the finer points of the art.

The Aegis programs makes some of the
reviewer’s task easier, because the reviewer
knows several specific things about a change
before it comes up for review: it builds, it has
tests, and they hav e run successfully. There is
also optional (per project) additional conditions
imposed at the end of development, such as line
length limits, or anything else which is automati-
cally testable.The Aegis program also provides a
difference listing to the reviewer, so that each and
ev ery edit, to each and every file, can be pointed
out to the reviewer.

There is nothing stopping a reviewer from being
either an administrator or a developer. The Aegis
program specifically prevents a developer from
reviewing his own work, to avoid conflicts of
interest. (It is possible for this restriction to be
waiv ed, but that only makes sense for one person
projects.)

It will occasionally be necessary to arbitrate
between a developer and a reviewer. The

appropriate person to do this would have line
responsibility above both staff inv olved. Thusit
is desirable that supervisors/managers not be
reviewers, except in very small teams.

2.1.4.3. Integrator

The role of the integrator is to take a change
which has already been reviewed and integrate it
with the baseline, to form a new baseline. The
integrator is thus the last line of defense for the
baseline.

There is nothing preventing an integrator from
being an administrator, a dev eloper or a reviewer.
The Aegis program specifically prevents a devel-
oper or reviewer from integrating his own work,
eliminating any conflict of interests.(It is possi-
ble for this restriction to be waived, but that only
makes sense for one and two person projects.)

It will occasionally be necessary to arbitrate
between an integrator and a reviewer and/or a
developer. The appropriate person to do this
would have line responsibility above all of the
staff inv olved. Thusit is desirable that supervi-
sors/mangers not be integrators, except in very
small teams.

The baseline is readable by all developers, but not
writable. All updates of the baseline to reflect
changes produced by developers are performed
through the agency of the integrator.

2.1.4.4. Administrator

The project administrator has the following
duties:

• Create new changes. Thesemay be the result of
some customer bug reporting mechanism, it may
be the result of new functionality being requested.

• Grant testing exemptions. By default, Aegis
insists that all changes be accompanied by tests.
The project administrator may grant case-by-case
exemptions, or a project-wide exemption.

• Add or remove staff. Thefour roles described in
this section may be assigned to, or removed from,
specificUNIX logins by the project administrator.

• Edit project attributes. There are many
attributes attached to a project, only a project
administrator may alter them.

• Edit change attributes. There are many
attributes attached to a change, only a project
administrator may alter all of them.

A project usually has only one or two administra-
tors at any one time.

Peter Miller (bl/lib/en/user-guide/c7.1.so) Page 9

User Guide Aegis

2.1.5. TheChange Process

This section will examine the progression of a
change through the six change states.Most of the
attention will be given to the conditions which
must be met in order to progress from one state to
the next, as this is where the software develop-
ment model employed by Aegis is most often
expressed.

See figure 2 for a picture of how all of the states
and transitions fit together.

2.1.5.1. NewChange

A project administrator creates a change.This
change will consist mostly of a description at this
time. The project administrator is not able
(through Aegis) to assign it to a specific devel-
oper.

The change is awaiting development; it is in the
aw aiting development state.

2.1.5.2. NewChange Undo

It is possible to abandon a change if it is in the
awaiting developmentstate. All record of the
change, including its description, will be deleted.

It is called new change undo to emphasize the
state it must be in to delete it.

2.1.5.3. Develop Begin

A dev eloper, for whatever reason, scans the list of
changes awaiting development. Having selected a
change, the developer then assigns that change to
herself.

The change is now being developed; it is in the
being developed state.

A number of Aegis commands only work in this
state, including commands to include files and
tests in the change (be they new files to be added
to the baseline, files in the baseline to be modi-
fied, or files to be deleted from the baseline),
commands to build the change, commands to test
the change, and commands to difference the
change.

The process of taking sources files, the preferred
form for editing of a project, and transforming
them, through various manipulations and transla-
tions, into a "finished" product is known as build-
ing. In the UNIX world this usually means things
like compiling and linking a program, but as
fancy graphical programs become more wide-
spread, the source files could be the binary output
from a graphical Entity-Relationship-Diagram

new
change

aw aiting
development

develop
begin

being
developed

develop
end

being
reviewed

review
pass

aw aiting
integration

integrate
begin

being
integrated

integrate
pass

completed

new
change
undo

develop
begin
undo

develop
end
undo

develop
end
undo

integrate
begin
undo

review
fail

review
pass

undo

integrate
fail

Figure 2: Change States and Transitions

editor, which would then be run through a
database schema generator.

The process of testing a change has three aspects.
The most intuitive is that a test must be run to
determine of the functionality works. Thesecond
requirement is that the test be run against the
baseline and fail; this is to ensure that bugs are
not just fixed, but reproduced as well. The third
requirement is optional: all or some of the tests
already in the baseline may also be run.Tests

Page 10 (bl/lib/en/user-guide/c7.1.so) Peter Miller

Aegis UserGuide

consist ofUNIX shell scripts - anything that can be
done in a shell script can be tested.

In preparation for review, a change is differenced.
This usually consists of automatically comparing
the present contents of the baseline with what the
change proposes to do to the baseline, on a file-
by-file basis. The results of the difference, such
asUNIX diff -c output, is kept in a difference file,
for examination by the reviewer(s). Thebenefit
of this procedure is that reviewers may examine
these files to see every change the developer
made, rather than only the obvious ones. The dif-
ferencing commands are per-project configurable,
and other validations, such as line length restric-
tions, may also be imposed at this time.

To leave this state, the change must have source
fi les, it must have tests, it must have built success-
fully, it must have passed all its own tests, and it
must have been differenced.

2.1.5.4. Develop Begin Undo

It is possible to return a change from the being
developed state to the awaiting development state.
This is usually desired if a developer selected the
wrong change by mistake. It also provides a
method to start over on a change for some other
reason.

2.1.5.5. Develop End

When the conditions for the end of development
have been met (the change must have source files,
it must have tests, it must have built successfully,
it must have passed all its own tests, and it must
have been differenced) the developer may cause
the change to leave the being developed state and
enter the being reviewed state. The Aegis pro-
gram will check to see that all the conditions are
met at this time. There is no history kept of
unsuccessful develop end attempts.

Most of these preconditions are determined by the
use of time stamps which are recorded for various
operations, in addition to file system timestamps
on the files themselves. Logicalsequencing (e.g.
tests being run after building after editing) is also
verified.

Note that there are 3 kinds of tests

1. If a change contains a new test or a test
which is being modified, this test must pass
against the code compiled and linked in the
change. Thisis simply referred to as a
“test”. Changesmay be granted an exemp-
tion from such tests.

2. If a change contains a new test and the
change is a bug fix, this test mustfail against
the old code in the baseline. This is to con-
fi rm that the bug has been fixed. This is
referred to as a “baseline test”.Changes
may be granted an exemption from such
tests.

3. Tests which already exist in the baseline may
be run against the code compiled and linked
in the change.These tests must pass. This is
to confirm that the project has not regressed,
which is why these tests are referred to as
“regression tests”. Changes may be granted
an exemption from such tests.

A successful develop end command results in the
change advancing from thebeing developedstate
to thebeing reviewedstate. (Itis also possible to
advance to theawaiting review state or theawait-
ing integration state. Seeaede(1) or aepattr(5)
for more information.)

2.1.5.6. Develop End Undo

There are many times when a developer thinks
that a change is completed, and goes hunting for a
reviewer. Half way down the hall, she thinks of
something that should have been included.

It is possible for a developer to rescind aDevelop
End to allow further work on a change.No rea-
son need be given. Thisrequest may be issued to
a change in either thebeing reviewedor awaiting
integrationstates.

2.1.5.7. Review Pass

This event is used to notify Aegis that the change
has been examined, by a method unspecified as
discussed above, and has been found to be accept-
able.

2.1.5.8. Review Pass Undo

The reviewer of a change may rescind aReview
Pass while the change remains in theawaiting
integration state. Noreason need be supplied.
The change will be returned to thebeing reviewed
state.

2.1.5.9. Review Fail

This event is used to notify Aegis that the change
has been examined, by a method unspecified as
discussed above, and has been found to be unac-
ceptable.

A file containing a brief summary of the problems
must be given, and will be included in the

Peter Miller (bl/lib/en/user-guide/c7.1.so) Page 11

User Guide Aegis

change’s history.

The change will be returned to thebeing devel-
opedstate for further work.

It is not the responsibility of any reviewer to fix a
defective change.

2.1.5.10. IntegrateBegin

This command is used to commence integration
of a change into the project baseline.

Whether a physical copy of the baseline is used,
or a logical copy using links, is controlled by the
project configuration file. The change is then
applied to this copy.

The integrator must then issue build and test com-
mands as appropriate. This is not automated as
some integrator tasks may be required in and
around these commands.

2.1.5.11. IntegrateBegin Undo

This command is used to return a change to the
integration queue, without prejudice. No reason
need be given.

This is usually done when a particularly important
change is in the queue, and the current integration
is expected to take a long time.

2.1.5.12. IntegratePass

This command is used to notify Aegis that the
change being integrated is acceptable.

The current baseline is replaced with the integra-
tion copy, and the history is updated.

2.1.5.13. IntegrateFail

This command is used to notify Aegis that an
integration is unacceptable, usually because it
failed to build or test in some way, or sometimes
because the integrator found a deficiency.

A file containing abrief summary of the problems
must be given, and the summary will be included
in the change’s history.

The change will be returned to thebeing devel-
opedstate for further work. Theintegration copy
of the baseline is deleted, leaving the original
baseline unchanged.

It is not the responsibility of any integrator to fix
a defective change, or even diagnose what the
defect may be.

Page 12 (bl/lib/en/user-guide/c7.2.so) Peter Miller

Aegis UserGuide

2.2. Philosophy

The philosophy is simple, and that makes some of
the implementation complex.

• When a change is in thebeing developedstate,
the aegis program is a developer’s tool. Its pur-
pose is to make it as easy for a developer to
develop changes as possible.

• When a change leaves (or attempts to leave) the
being developedstate, the aegis program is pro-
tecting the project baseline, and does not exist to
make the developer happy.

• The aegis program attempts to adhere to the
UNIX minimalist philosophy. Least unnecessary
output, least command line length, least depen-
dence onspecific3rd party tools.

• No overlap in functionality of cooperating tools.
(I.e. no internal build mechanism, no internal his-
tory mechanism, etc.)

2.2.1. Development

During the development of a change, the aegis
program exists to help the developer. It helps him
navigate around his change and the project, it
copies file for him, and keeps track of the ver-
sions. Itcan even tell him what changes he has
made.

2.2.2. Post Development

When a change has left the "being developed"
state, or when it is attempting to leave that state,
the aegis program ceases to attempt to help the
developer and proceeds to defend the project
baseline. Themodel used by aegis states that "the
baseline always works", and aegis attempts to
guarantee this.

2.2.3. Minimalism

The idea of minimalism is to help the user out.It
is the intention that the aegis program can work
out unstated command line options for itself, in
cases where it is "safe" to do so. This means a
number of defaulting mechanisms, all designed to
help the user.

2.2.4. Overlap

It was very tempting while writing the aegis pro-
gram to have it grow and cover source control and
dependency maintenance roles.Unfortunately,
this would have meant that the user would have
been trapped with whatever the aegis program
provided, and the aegis program is already plenty
big. To add this functionality would have div erted

effort, resulting in an inferior result. It would also
have violated the underlyingUNIX philosophy.

2.2.5. DesignGoals

A number of specific ideas molded the shape of
the aegis program. These include:

The UNIX philosophy of writing small tools for
specific tasks with little or no overlap. Tools
should be written with the expectation of use in
pipes or scripts, or other combinations.

• Stay out of the way. If it is possible to let a
project do whatever it l ikes, write the code to let
it. It is not possible to anticipate even a fraction
of the applications of a software tool.

• People. Thestaff using aegis should be in
charge of the development process.They should
not feel that some machine is giving them orders.

• Users aren’t psychic. Feedbackmust be clear,
accurate and appropriate.

Peter Miller (bl/lib/en/user-guide/c7.5.so) Page 13

User Guide Aegis

2.3. Security

Access to project data is controlled by theUNIX

group mechanism.The group may be selected as
suitable for your project, as may the umask.

All work done by developers (build, difference,
etc) is all with a default group of the project’s
group, irrespective of the user’s default group.
Directories (when BSD semantics are available)
are all created so that their contents default to the
correct group. This ensures that reviewers and
integrators are able to examine the change.

Other UNIX users not in the project’s group may
be excluded, or not, by the appropriate setting of
the project umask. This umask is used by all
Aegis actions, assuring appropriate default
behaviour.

A second aspect of security is to ensure that
developers are unable to deliberately deceive
Aegis. Shouldthe files be tampered with at any
later date, Aegis will notice.

2.4. Scalability

How big can a project get before Aegis chokes?
There are a huge number of variables in this ques-
tion.

The most obvious bottleneck is the integrator. An
artificial "big project" example: Assume that the
av erage integration takes an hour to build and test.
A full-time integrator could be expected to get 7
or 8 of these done per day (this was the observed
av erage on one project the author was involved
in). Assumethat the average time for a developer
to develop a change is two weeks; a figure recom-
mended by many text books as "the most you can
afford to throw away". Thesetwo assumptions
mean that for this "big project" Aegis can cope
with 70 to 80 developers, before integrations
become a bottleneck.

The more serious bottle neck is the dependency
maintenance tool.Seventy developers can churn
out a staggering volume of code.It takes a very
long time to wade through the file times and the
rules, just to find the one or two files which
changed. Thiscan easily push the integrate build
time past the one hour mark.Developers also
become very vocal when build times are this long.

Page 14 (bl/lib/en/user-guide/c1.3.so) Peter Miller

Aegis UserGuide

2.5. When(not) to use Aegis

The aegis program is not a silver bullet; it will not
solve all of your problems.Aegis is suitable for
some kinds of projects, useful for others, and use-
less for a few.

The software development process embodied by
Aegis has the following attributes:

• Each change set is applied atomically.

• Each change set must build successfully before
it will be accepted. (This can be trivial, if
desired.)

• Each change set must test successfully before it
will be accepted. (This can be disabled, if
desired.)

• Each change set must pass a peer review before
it will be accepted. (This can be a rubber
stamp, if desired.)

The most difficult thing about Aegis program is
that it takes management buy-in. It takes effort to
convince many people that the model used by
aegis has benefits, and you need management
backing you up when some person comes along
with a way of developing software "without the
extra work" imposed by the model used by Aegis.

2.5.1. Building

If the source code to your software product
doesn’t build, it isn’t a product. However, many
software shops commit changes to their repository
without preconditions, and then do a daily build
(or worse, weekly). The problem here is that
"pollution" by defective changes is alreadyin
your productbefore it is detected.Aegis will not
let it be committed in the first place.

If your product is entirely composed of scripts or
HTML, you can make the build step completely
trivial: "exit 0" is usually used for this purpose.
Thus, this requirement, while usually highly
desirable, may be avoided if desired.

2.5.2. Testing

There is extra up-front work: writing tests. The
win is that the tests hang around forever, catching
minor and major slips before they become embar-
rassing "features" in a released product.Preven-
tion is cheaper than cure in this case, the tests
save work down the track. See thetestingchapter
for more information.

2.5.3. Reviewing

Code reviews of some sort are normal in most
software houses. Often, unfortunately, time pres-
sures or other political pressures mean that code
reviews manage not to happen.Yet the literature
repeatedly cites reviews as one of the most impor-
tant factors in removing defects before they reach
your code repository. Aegis requires a code
review before it will commit code into your prod-
uct; again, the idea is to remove defectsbefore
they pollute the product.

Peter Miller (bl/lib/en/user-guide/c7.4.so) Page 15

User Guide Aegis

2.6. Further Work

The Aegis program is far from finished. Anum-
ber of features are known to be lacking.

At the date of this writing, Aegis is being
actively supported and improved.

2.6.1. CodeCoverage Tool

It would be very helpful if a code coverage tool
could be used to analyze tests included with
changes to ensure that the tests actually exercised
the lines of code changed in the change.

Another use of the code coverage tool would be to
select regression tests based on the object files
recompiled by a change, and those regression
tests which exercise those files.

While there is freeware C code coverage tool
available, based on GNU C, the interfacing and
semantics still need more thought.

Note: A fairly good approximation is already
available using the--suggest option of theaet(1)
command. Itworks on the correlation of sources
fi le versus tests in the various change sets.See
aet(1) for more information.

2.6.2. Virtual File System

There is almost sufficient information in the
Aegis data base to create a virtual file system,
overlaying the development directory atop the
baseline4. This could be implemented similarly to
automounters, intercepting file system operations
by pretending to be an NFS server. Many com-
mercial CASE products provide such a facility.

Such a virtual file system has a number of advan-
tages: you don’t need such a capable DMT, for
starters; it only needs the dynamic include depen-
dencies, and does not need a search path5. Sec-
ond, many horrible and dumb compilers, notably
FORTRAN and "fourth" GLs, don’t hav e ade-
quate include semantics; overlaying the two direc-
tories make this much easier to deal with6. Many
graphical tools, such as bubble chart drawers, etc,
when they do actually have include files, have no
command line specifiable search path.

4 Reminiscent of Sun’s TFS, but not the same.
Similar to AT&T’ s 3D-FS. Similar to TeamNet.
Similar to ClearCase, but I wasn’t thinking of the
time-travel aspects which they implement.

5 Discussed in theDependency Maintenance
Tool chapter.

6 There are other ways, discussed in theTips and
Tr apschapter.

The disadvantage is that this adds significant
complexity to an already large program. Also,
implementation is limited to NFS capable sys-
tems, or would have to be rewritten for a variety
of other systems. The semantics of interactions
between the daemon and other Aegis commands,
while clearly specifiable, are challenging to
implement. Performancecould also be a signifi-
cant factor.

The question is "is it really necessary?" If the job
can be done without it, does the effort of writing
such a beast result in significant productivity
gains?

The addition of thecreate_symlinks_before_build
field to the project configuration file has greatly
reduced the need for this functionality. Howev er,
it does not provide copy-on-write semantics, nor
automaticaecpfunctionality; which a virtual file
system could do.

Page 16 (bl/lib/en/user-guide/c2.0.so) Peter Miller

Aegis UserGuide

3. TheChange Development Cycle

As a change to a project is developed using Aegis,
it passes through several states. Each state is
characterized by different quality requirements,
different sets of applicable Aegis commands, and
different responsibilities for the people involved.

These people may be divided into four categories:
developers, reviewers, integrators and administra-
tors. Eachhas different responsibilities, duties
and permissions; although one person may belong
to more than one category, depending on how a
project is administered.

This chapter looks at each of these categories, by
way of an example project undergoing its first
four changes. This example will be examined
from the perspective of each category of people in
the following sections.

There are six hypothetical users in the example:
the developers are Pat, Jan and Sam; the reviewers
are Robyn and Jan; the integrator is Isa; and the
administrator is Alex7. There need not have been
this many people involved, but it keeps things
slightly cleaner for this example.

The project is called "example". It implements a
very simple calculator. Many features important
to a quality product are missing, checking for
divide-by-zero for example. Thesehave been
omitted for brevity.

7 The names are deliberately gender-neutral.
Finding such a name starting with "I" is not easy!

Peter Miller (bl/lib/en/user-guide/c2.0.so) Page 17

User Guide Aegis

3.1. TheDeveloper

The developer role is the coal face8. This is where new software is written, and bugs are fixed. Thisexam-
ple shows only the addition of new functionality, but usually a change will include modifications of existing
code, similar to bug-fixing activity.

3.1.1. Before You Start

Have you configured your account to use Aegis? SeetheUser Setupsection of theTips and Trapschapter
for how to do this.

3.1.2. TheFirst Change

While the units of change, unoriginally, are called "changes", this also applies to the start of a project - a
change to nothing, if you like. Thedeveloper of this first change will be Pat.

First, Pat has been told by the project administrator that the change has been created.How Alex created
this change will be detailed in the "Administrator" section, later in this chapter. Pat then acquires the
change and starts work.

pat% aedb -l -p example.1.0
Project "example.1.0"
List of Changes

Change State Description
------- ------- -------------

10 awaiting_ Create initial skeleton.
development

pat% aedb example.1.0 10
aegis: project "example.1.0": change 10: development directory "/u/pat/

example.1.0.C010"
aegis: project "example.1.0": change 10: user "pat" has begun development
pat% aecd
aegis: project "example.1.0": change 10: /u/pat/example.1.0.C010
pat%

At this point Aegis has created a development directory for the change and Pat has changed directory to the
development directory9.

Five files will be created by this change.

pat% aenf aegis.conf Howto.cook gram.y lex.l main.c
aegis: project "example.1.0": change 10: file "Howto.cook" added
aegis: project "example.1.0": change 10: file "aegis.conf" added
aegis: project "example.1.0": change 10: file "gram.y" added
aegis: project "example.1.0": change 10: file "lex.l" added
aegis: project "example.1.0": change 10: file "main.c" added
pat%

The contents of theaegis.conffi le will not be described in this section, mostly because it is a rather com-
plex subject; so complex it requires four chapters to describe: theHistory Tool chapter, the Dependency
Maintenance Tool chapter, theDifference Toolschapter and theProject Attributeschapter. The contents of
the Howto.cookfi le will not be described in this section, as it is covered in theDependency Maintenance
Tool chapter.

The filemain.cwill have been created by Aegis as an empty file. Pat edits it to look like this

8 I thought this expression was fairly common English usage, until I had a query. "The Coal Face" is an
expression meaning "where thereal work is done" in reference to old-style coal mining which was hard, tiring,
hot, very dangerous, and bad for your health even if you were lucky enough not to be killed. It was a 14-hour
per day job, and you walked to and from work in the dark, even in summer. Unlike the mine owners, who rode
expensive horses and saw sunlight most days of the week.

9 The default directory in which to place new dev elopment directories is configurable for each user.

Page 18 (bl/lib/en/user-guide/c2.1.so) Peter Miller

Aegis UserGuide

#include <stdio.h>

static void
usage()
{

fprintf(stderr, "usage: example\n");
exit(1);

}

void
main(argc, argv)

int argc;
char **argv;

{
if (argc != 1)

usage();
yyparse();
exit(0);

}

The file gram.y describes the grammar accepted by the calculator. This file was also created empty by
Aegis, and Pat edits it to look like this:

%token DOUBLE
%token NAME

%union
{

int lv_int;
double lv_double;

}

%type <lv_double> DOUBLE expr
%type <lv_int> NAME

%left ’+’ ’-’
%left ’*’ ’/’
%right UNARY

%%

Peter Miller (bl/lib/en/user-guide/c2.1.so) Page 19

User Guide Aegis

example
: /* e mpty */
| e xample command ’\n’

{ y yerrflag = 0; fflush(stderr); fflush(stdout); }
command

: e xpr
{ p rintf("%g\n", $1); }

| e rror
expr

: D OUBLE
{ $$ = $ 1; }

| ’ (’ expr ’)’
{ $$ = $ 2; }

| ’ -’ expr
%prec UNARY
{ $$ = - $2; }

| e xpr ’*’ expr
{ $$ = $1 * $ 3; }

| e xpr ’/’ expr
{ $$ = $1 / $ 3; }

| e xpr ’+’ expr
{ $$ = $1 + $ 3; }

| e xpr ’-’ expr
{ $$ = $1 - $ 3; }

The file lex.l describes a simple lexical analyzer. It will be processed bylex(1) to produce C code imple-
menting the lexical analyzer. This kind of simple lexer is usually handcrafted, but using lex allows the
example to be far smaller. Pat edits the file to look like this:

%{
#include <math.h>
#include <libaegis/gram.h>
%}
%%
[\ t]+ ;
[0-9]+(\.[0-9]*)?([eE][+-]?[0-9]+)? {

yylval.lv_double = atof(yytext);
return DOUBLE;

}
[a-z] {

yylval.lv_int = yytext[0] - ’a’;
return NAME;

}
\n |
. r eturn yytext[0];

Note how the gram.hfi le is included using the#include < filename> form. This is very important
for builds in later changes, and is discussed more fully in theUsing Cooksection of theDependency Main-
tenance Toolchapter.

The files are processed, compiled and linked together using theaebcommand; this is known asbuilding a
change. Thisis done through Aegis so that Aegis can know the success or failure of the build. (Build suc-
cess is a precondition for a change to leave the being developedstate.) Thebuild command is in the
aegis.conffi le so vaguely described earlier. In this example it will use thecook(1) command which in turn
will use theHowto.cookfi le, also alluded to earlier. This file describes the commands and dependencies for
the various processing, compiling and linking.

Page 20 (bl/lib/en/user-guide/c2.1.so) Peter Miller

Aegis UserGuide

pat% aeb
aegis: project "example.1.0": change 10: development build started
aegis: cook -b Howto.cook project=example.1.0 change=10

version=1.0.C010 -nl
cook: yacc -d gram.y
cook: mv y.tab.c gram.c
cook: mv y.tab.h gram.h
cook: cc -I. -I/projects/example/branch.1./branch0/baseline -O -c gram.c
cook: lex lex.l
cook: mv lex.yy.c lex.c
cook: cc -I. -I/projects/example/branch.1/branch.0/baseline -O -c lex.c
cook: cc -I. -I/projects/example/baseline -O -c main.c
cook: cc -o example gram.o lex.o main.o -ll -ly
aegis: project "example.1.0": change 10: development build complete
pat%

The example program is built, and Pat could even try it out:

pat% example
1 + 2
3
ˆD
pat%

At this point the change is apparently finished. Thecommand to tell Aegis this is thedevelop endcom-
mand:

pat% aede
aegis: project "example.1.0": change 10: no current ’aegis -DIFFerence’

registration
pat%

It didn’t work, because Aegis thinks you have missed the difference step.

The difference step is used to produce files useful for reviewing changes, mostly in the form of context dif-
ference files between the project baseline and the development directory. Context differences allow review-
ers to see exactly what has changed, and not have to try to track them down and inevitably miss obscure but
important edits to large or complex files.

pat% aed
aegis: set +e; diff -c /dev/null /u/pat/example.1.0.C010/Howto.cook >

/u/pat/example.1.0.C010/Howto.cook,D; test $? -eq 0 -o $? -eq 1
aegis: set +e; diff -c /dev/null /u/pat/example.1.0.C010/aegis.conf >

/u/pat/example.1.0.C010/aegis.conf,D; test $? -eq 0 -o $? -eq 1
aegis: set +e; diff -c /dev/null /u/pat/example.1.0.C010/gram.y >

/u/pat/example.1.0.C010/gram.y,D; test $? -eq 0 -o $? -eq 1
aegis: set +e; diff -c /dev/null /u/pat/example.1.0.C010/lex.l >

/u/pat/example.1.0.C010/lex.l,D; test $? -eq 0 -o $? -eq 1
aegis: set +e; diff -c /dev/null /u/pat/example.1.0.C010/main.c >

/u/pat/example.1.0.C010/main.c,D; test $? -eq 0 -o $? -eq 1
aegis: project "example.1.0": change 10: difference complete
pat%

Doing a difference for a new file may appear a little pedantic, but when a change consists of tens of files, so
modifications of existing files and some new, there is a temptation for reviewers to use "more *,D" and thus
completely miss the new files if it were not for this pedanticism10.

So that reviewers, and conscientious developers, may locate and view all of these difference files, the com-
mand

10 This is especially true when you use a tool such asfcomp(1) which gives a complete file listing with the
inserts and deletes marked in the margin. Thistool is also available from the author of Aegis.

Peter Miller (bl/lib/en/user-guide/c2.1.so) Page 21

User Guide Aegis

pat% more ‘find . -name "*,D" -print | sort‘
...examines each file...
pat%

could be used, however this is a little too long winded for most users, and so theaedmorealias does exactly
this. Thereis a similaraedlessalias for those who prefer theless(1) command.

So now Pat is done, let’s try to sign off again:

pat% aede
aegis: project "example.1.0": change 10: no current ’aegis -Test’

registration
pat%

It didn’t work, again. Thistime Aegis is reminding Pat that every change must be accompanied by at least
one test. This is so that the project team can be confident at all times that a project works11. Making this a
precondition to leave thebeing developedstate means that a reviewer can be sure that a change builds and
passes its tests before it can ever be reviewed. Pat adds the truant test:

pat% aent
aegis: project "example.1.0": change 10: file "test/00/t0001a.sh" new

test
pat%

The test file is in a weird place, eh?This is because many flavors ofUNIX are slow at searching directories,
and so Aegis limits itself to 100 tests per directory. Whatever the name, Pat edits the test file to look like
this:

#!/bin/sh
#
t est simple arithmetic
#
tmp=/tmp/$$
here=‘pwd‘
if [$? -ne 0]; then exit 1; fi

fail()
{

echo FAILED 1>&2
cd $here
rm -rf $tmp
exit 1

}

pass()
{

cd $here
rm -rf $tmp
exit 0

}
trap "fail" 1 2 3 15

mkdir $tmp
if [$? -ne 0]; then exit 1; fi
cd $tmp
if [$? -ne 0]; then fail; fi

11 As discussed in theHow Aegis Works chapter, aegis has the objective of ensuring that projects always
work, where "works" is defined as passing all tests in the project’s baseline. Achange "works" if it passes all of
its accompanying tests.

Page 22 (bl/lib/en/user-guide/c2.1.so) Peter Miller

Aegis UserGuide

#
with input like this
#
cat > test.in << ’foobar’
1
(24 - 22)
-(4 - 7)
2 * 2
10 / 2
4 + 2
10 - 3
foobar
if [$? -ne 0]; then fail; fi

#
t he output should look like this
#
cat > test.ok << ’foobar’
1
2
3
4
5
6
7
foobar
if [$? -ne 0]; then fail; fi

#
r un the calculator
and see if the results match
#
$here/example < test.in > test.out
if [$? -ne 0]; then fail; fi
diff test.ok test.out
if [$? -ne 0]; then fail; fi

#
t his much worked
#
pass

There are several things to notice about this test file:

• It is a Bourne shell script. All test files are Bourne shell scripts because they are the most portable.12

(Actually, Aegis likes test files not to be executable, it passes them to the Bourne shell explicitly
when running them.)

• It makes the assumption that the current directory is either the development directory or the baseline.
This is valid, aegis always runs tests this way; if you run one manually, you must take care of this
yourself.

• It checks the exit status of each and every command.It is essential that even unexpected and impossible
failures are handled.

• A temporary directory is created for temporary files. It cannot be assumed that a test will be run from a
directory which is writable; it is also easier to clean up after strange errors, since you need only throw
the directory away, rather than track down individual temporary files. It mostly protects against
rogue programs scrambling files in the current directory, too.

12 Portable for Aegis’ point of view: Bourne shell is the most widely available shell. Of course, if you are
writing code to publish on USENET or for FTP, portability of the tests will be important from the developer’s
point of view also.

Peter Miller (bl/lib/en/user-guide/c2.1.so) Page 23

User Guide Aegis

• Every test is self-contained. The test uses auxiliary files, but they are not separate source files (figuring
where they are when some are in a change and some are in the baseline can be a nightmare).If a test
wants an auxiliary file, it must construct the file itself, in a temporary directory.

• Two functions have been defined, one for success and one for failure. Bothforms remove the temporary
directory. A test is defined as passing if it returns a 0 exit status, and failing if it returns anything
else.

• Tests are treated just like any other source file, and are subject to the same process.They may be altered
in another change, or even deleted later if they are no longer useful.

The most important feature to note about this test, after ignoring all of the trappings, is that it doesn’t do
much you wouldn’t do manually! To test this program manually you would fire it up, just as the test does,
you would give it some input, just as the test does, and you would compare the output against your expecta-
tions of what it will do, just as the test does.

The difference with using this test script and doing it manually is that most development contains many
iterations of the "build, test,think, edit, build, test..." cycle. Aftera couple of iterations, the manual testing,
the constant re-typing, becomes obviously unergonomic. Usinga shell script is more efficient, doesn’t for-
get to test things later, and is preserved for posterity (i.e. adds to the regression test suite).

This efficiency is especially evident when using commands13 such as

pat% aeb && aet ; vi aegis.log
...
pat% !aeb
...
pat%

It is possible to talk to the shell extremely rarely, and then only to re-issue the same command, using a work
pattern such as this.

As you have already guessed, Pat now runs the test like this:

pat% aet
aegis: sh /u/pat/example.1.0.C010/test/00/t0001a.sh
aegis: project "example.1.0": change 10: test "test/00/t0001a.sh"

passed
aegis: project "example.1.0": change 10: passed 1 test
pat%

Finally, Pat has built the change, prepared it for review and tested it. It is now ready for sign off.

pat% aede
aegis: project "example.1.0": change 10: no current ’aegis -Build’

registration
pat%

Say what? The problem is that the use ofaentcanceled the previous build registration. Thiswas because
Aegis is decoupled from the dependency maintenance tool (cook in this case), and thus has no way of
knowing whether or not the new file in the change would affect the success or failure of a build14. All that
is required is to re-build, re-test, re-difference (yes, the test gets differenced, too) and sign off.

13 This is acshspecific example, unlike most others.
14 Example: in addition to the executable file "example" shown here, the build may also produce an archive

fi le of the project’s source for export. Theaddition of one more file may push the size of this archive beyond a
size limit; the build would thus fail because of the addition of a test.

Page 24 (bl/lib/en/user-guide/c2.1.so) Peter Miller

Aegis UserGuide

pat% aeb
aegis: logging to "/u/pat/example.1.0.C010/aegis.log"
aegis: project "example.1.0": change 10: development build started
aegis: cook -b Howto.cook project=example.1.0 change=10

version=1.0.C001 -nl
cook: "all" is up-to-date
aegis: project "example.1.0": change 10: development build complete
pat% aet
aegis: logging to "/u/pat/example.1.0.C010/aegis.log"
aegis: sh /u/pat/example..1.0.C010/test/00/t0001a.sh
aegis: project "example.1.0": change 10: test "test/00/t0001a.sh"

passed
aegis: project "example.1.0": change 10: passed 1 test
pat% aed
aegis: logging to "/u/pat/example.1.0.C010/aegis.log"
aegis: set +e; diff -c /dev/null /u/pat/example.1.0.C010/test/00/

t0001a.sh > /u/pat/example.1.0.C010/test/00/t0001a.sh,D; test
$? -eq 0 -o $? -eq 1

aegis: project "example.1.0": change 10: difference complete
pat% aede
aegis: sh /usr/local/lib/aegis/de.sh example.1.0 10 pat
aegis: project "example.1.0": change 10: development completed
pat%

The change is now ready to be reviewed. Thissection is about developers, so we will have to leave this
change at this point in its history. Some time in the next day or so Pat receives electronic mail that this
change has passed review, and another later to say that it passed integration. Pat is now free to develop
another change, possibly for a different project.

3.1.3. TheSecond Change

The second change was created because someone wanted to name input and output files on the command
line, and called the absence of this feature a bug. WhenJan arrived for work, and lists the changes awaiting
development, the following list appeared:

jan% aedb -l -p example.1.0
Project "example.1.0"
List of Changes

Change State Description
------ ------ ------------

11 awaiting_ Add input and output file names to the
development command line.

12 awaiting_ add variables
development

13 awaiting_ add powers
development

jan%

The first on the list is chosen.

jan% aedb -c 11 -p example.1.0
aegis: project "example.1.0": change 11: development directory "/u/

jan/example.1.0.C011"
aegis: project "example.1.0": change 11: user "jan" has begun

development
jan% aecd
aegis: project "example.1.0": change 11: /u/jan/example.002
jan%

The best way to get details about a change is to used the "change details" listing.

Peter Miller (bl/lib/en/user-guide/c2.1.so) Page 25

User Guide Aegis

jan% ael cd
Project "example.1.0", Change 11
Change Details

NAME
Project "example.1.0", Change 11.

SUMMARY
file names on command line

DESCRIPTION
Optional input and output files may be specified on the
command line.

CAUSE
This change was caused by internal_bug.

STATE
This change is in ’being_developed’ state.

FILES
Change has no files.

HISTORY
What When Who Comment
------ ------ ----- ---------
new_change Fri Dec 11 alex

14:55:06 1992
develop_begin Mon Dec 14 jan

09:07:08 1992
jan%

Through one process or another, Jan determines that themain.cfi le is the one to be modified. Thisfi le is
copied into the change:

jan% aecp main.c
aegis: project "example.1.0": change 11: file "main.c" copied
jan%

This file is now extended to look like this:

#include <stdio.h>

static void
usage()
{

fprintf(stderr, "usage: example [<infile> [<outfile>]]\n");
exit(1);

}

void
main(argc, argv)

int argc;
char **argv;

{
char *in = 0;
char *out = 0;
int j;

Page 26 (bl/lib/en/user-guide/c2.1.so) Peter Miller

Aegis UserGuide

for (j = 1; j < argc; ++j)
{

char *arg = argv[j];
if (arg[0] == ’-’)

usage();
if (!in)

in = arg;
else if (!out)

out = arg;
else

usage();
}

if (in && !freopen(in, "r", stdin))
{

perror(in);
exit(1);

}
if (out && !freopen(out, "w", stdout))
{

perror(out);
exit(1);

}

yyparse();
exit(0);

}

A new test is also required,

jan% aent
aegis: project "example.1.0": change 11: file "test/00/t0002a.sh" new

test
jan%

which is edited to look like this:

#!/bin/sh
#
t est command line arguments
#
tmp=/tmp/$$
here=‘pwd‘
if [$? -ne 0]; then exit 1; fi

fail()
{

echo FAILED 1>&2
cd $here
rm -rf $tmp
exit 1

}

pass()
{

cd $here
rm -rf $tmp
exit 0

}
trap "fail" 1 2 3 15

Peter Miller (bl/lib/en/user-guide/c2.1.so) Page 27

User Guide Aegis

mkdir $tmp
if [$? -ne 0]; then exit 1; fi
cd $tmp
if [$? -ne 0]; then fail; fi

#
with input like this
#
cat > test.in << ’foobar’
1
(24 - 22)
-(4 - 7)
2 * 2
10 / 2
4 + 2
10 - 3
foobar
if [$? -ne 0]; then fail; fi

#
t he output should look like this
#
cat > test.ok << ’foobar’
1
2
3
4
5
6
7
foobar
if [$? -ne 0]; then fail; fi

#
r un the calculator
and see if the results match
#
(Use /dev/null for input in case input redirect fails;
don’t want the test to hang!)
#
$here/example test.in test.out < /dev/null
if [$? -ne 0]; then fail; fi
diff test.ok test.out
if [$? -ne 0]; then fail; fi
$here/example test.in < /dev/null > test.out.2
if [$? -ne 0]; then fail; fi
diff test.ok test.out.2
if [$? -ne 0]; then fail; fi

#
make sure complains about rubbish
on t he command line
#
$here/example -trash < test.in > test.out
if [$? -ne 1]; then fail; fi

#
t his much worked
#
pass

Now it is time for Jan to build and test the change. Through the magic of static documentation, this works
fi rst time, and here is how it goes:

Page 28 (bl/lib/en/user-guide/c2.1.so) Peter Miller

Aegis UserGuide

jan% aeb
aegis: logging to "/u/pat/example.1.0.C011/aegis.log"
aegis: project "example.1.0": change 11: development build started
aegis: cook -b /projects/example/baseline/Howto.cook

project=example.1.0 change=11 version=1.0.C011 -nl
cook: cc -I. -I/projects/example/baseline -O -c main.c
cook: cc -o example main.o /projects/example/baseline/gram.o

/projects/example/baseline/lex.o -ll -ly
aegis: project "example.1.0": change 11: development build complete
jan% aet
aegis: logging to "/u/pat/example.1.0.C011/aegis.log"
aegis: sh /u/jan/example.1.0.C011/test/00/t0002a.sh
aegis: project "example.1.0e": change 11: test "test/00/t0002a.sh"

passed
aegis: project "example.1.0": change 11: passed 1 test
jan%

All that remains if to difference the change and sign off.

jan% aed
aegis: logging to "/u/pat/example.1.0.C011/aegis.log"
aegis: set +e; diff -c /projects/example/main.c /u/jan/

example.1.0.C011/main.c > /u/jan/example.1.0.C011/main.c,D; test $?
-eq 0 -o $? -eq 1

aegis: project "example.1.0": change 11: difference complete
jan% aedmore
...examines the file...
jan%

Note how the context difference shows exactly what has changed. And now the sign-off:

jan% aede
aegis: project "example.1.0": change 11: no current ’aegis -Test

-BaseLine’ registration
jan%

No, it wasn’t enough. Tests must not only pass against a new change, but must fail against the project base-
line. Thisis to establish, in the case of bug fixes, that the bug has been isolatedand fixed. New functional-
ity will usually fail against the baseline, because the baseline can’t do it (if it could, you wouldn’t be adding
it!). So,Jan needs to use a variant of theaetcommand.

jan% aet -bl
aegis: sh /u/jan/example.1.0.C011/test/00/t0002a.sh
usage: example
FAILED
aegis: project "example.1.0": change 11: test "test/00/t0002a.sh" on

baseline failed (as it should)
aegis: project "example.1.0": change 11: passed 1 test
jan%

Running the regression tests is also a good idea

jan% aet -reg
aegis: logging to "/u/pat/example.1.0.C011/aegis.log"
aegis: sh /projects/example/baseline/test/00/t0001a.sh
aegis: project "example.1.0": change 11: test "test/00/t0001a.sh"

passed
aegis: project "example.1.0": change 11: passed 1 test
jan%

Now Aegis will be satisfied

jan% aede
aegis: sh /usr/local/lib/aegis/aegis/de.sh example.1.0 11 jan
aegis: project "example.1.0": change 11: development completed
jan%

Peter Miller (bl/lib/en/user-guide/c2.1.so) Page 29

User Guide Aegis

Like Pat in the change before, Jan will receive email that this change passed review, and later that it passed
integration.

3.1.4. TheThird and Fourth Changes

This section will show two people performing two changes, one each. The twist is that they hav ea file in
common.

First Sam looks for a change to work on and starts, like this:

sam% aedb -l
Project "example.1.0"
List of Changes

Change State Description
------- ------- -------------

12 awaiting_ add powers
development

13 awaiting_ add variables
development

sam% aedb 12
aegis: project "example.1.0": change 12: development directory "/u/

sam/example.1.0.C012"
aegis: project "example.1.0": change 12: user "sam" has begun

development
sam% aecd
aegis: project "example.1.0": change 12: /u/sam/example.1.0.C012
sam%

A l ittle sniffing around reveals that only thegram.ygrammar file needs to be altered, so it is copied into the
change.

sam% aecp gram.y
aegis: project "example.1.0": change 12: file "gram.y" copied
sam%

The grammar file is changed to look like this:

%token DOUBLE
%token NAME
%union
{

double lv_double;
int lv_int;

};

%type <lv_double> DOUBLE expr
%type <lv_int> NAME
%left ’+’ ’-’
%left ’*’ ’/’
%right ’ˆ’
%right UNARY

%%
example

: /* e mpty */
| e xample command ’\n’

{ y yerrflag = 0; fflush(stderr); fflush(stdout); }
;

Page 30 (bl/lib/en/user-guide/c2.1.so) Peter Miller

Aegis UserGuide

command
: e xpr

{ p rintf("%g\n", $1); }
| e rror
;

expr
: D OUBLE
| ’ (’ expr ’)’

{ $$ = $ 2; }
| ’ -’ expr

%prec UNARY
{ $$ = - $2; }

| e xpr ’ˆ’ expr
{ $$ = p ow($1, $3); }

| e xpr ’*’ expr
{ $$ = $1 * $ 3; }

| e xpr ’/’ expr
{ $$ = $1 / $ 3; }

| e xpr ’+’ expr
{ $$ = $1 + $ 3; }

| e xpr ’-’ expr
{ $$ = $1 - $ 3; }

;

The changes are very small. Sam checks to make sure using the difference command:

sam% aed
aegis: logging to "/u/sam/example.1.0.C012/aegis.log"
aegis: set +e; diff -c /projects/example/baseline/gram.y /u/sam/

example.1.0.C012/gram.y > /u/sam/example.1.0.C012/gram.y,D; test $?
-eq 0 -o $? -eq 1

aegis: project "example.1.0": change 12: difference complete
sam% aedmore
...examines the file...
sam%

The difference file looks like this

*** /projects/example/baseline/gram.y
--- /u/sam/example.1.0.C012/gram.y

*** 1,5 ****
--- 1,6 ----

%{
#include <stdio.h>

+ #include <math.h>
%}
%token DOUBLE
%token NAME

*** 13,18 ****
--- 14,20 ----

%type <lv_int> NAME
%left ’+’ ’-’
%left ’*’ ’/’

+ %right ’ˆ’
%right UNARY
%%
example

Peter Miller (bl/lib/en/user-guide/c2.1.so) Page 31

User Guide Aegis

*** 32,37 ****
--- 34,41 ----

| ’ -’ expr
%prec UNARY
{ $$ = - $2; }

+ | expr ’ˆ’ expr
+ { $$ = pow($1, $3); }

| e xpr ’*’ expr
{ $$ = $1 * $ 3; }

| e xpr ’/’ expr

These are the differences Sam expected to see.

At this point Sam creates a test. All good software developers create the tests first, don’t they?

sam% aent
aegis: project "example.1.0": change 12: file "test/00/t0003a.sh" new

test
sam%

The test is created empty, and Sam edit it to look like this:

:
here=‘pwd‘
if test $? -ne 0 ; then exit 1; fi
tmp=/tmp/$$
mkdir $tmp
if test $? -ne 0 ; then exit 1; fi
cd $tmp
if test $? -ne 0 ; then exit 1; fi

fail()
{

echo FAILED 1>&2
cd $here
chmod u+w ‘find $tmp -type d -print‘
rm -rf $tmp
exit 1

}

pass()
{

cd $here
chmod u+w ‘find $tmp -type d -print‘
rm -rf $tmp
exit 0

}
trap "fail" 1 2 3 15

cat > test.in << ’end’
5.3 ˆ 0
4 ˆ 0 .5
27 ˆ (1/3)
end
if test $? -ne 0 ; then fail; fi

cat > test.ok << ’end’
1
2
3
end
if test $? -ne 0 ; then fail; fi

Page 32 (bl/lib/en/user-guide/c2.1.so) Peter Miller

Aegis UserGuide

$here/example test.in < /dev/null > test.out 2>&1
if test $? -ne 0 ; then fail; fi

diff test.ok test.out
if test $? -ne 0 ; then fail; fi

$here/example test.in test.out.2 < /dev/null
if test $? -ne 0 ; then fail; fi

diff test.ok test.out.2
if test $? -ne 0 ; then fail; fi

it p robably worked
pass

Everything is ready. Now the change can be built and tested, just like the earlier changes.

sam% aeb
aegis: logging to "/u/sam/example.1.0.C012/aegis.log"
aegis: project "example1.0": change 12: development build started
aegis: cook -b /projects/example/baseline/Howto.cook

project=example.1.0 change=12 version=1.0.C012 -nl
cook: yacc -d gram.y
cook: mv y.tab.c gram.c
cook: mv y.tab.h gram.h
cook: cc -I. -I/projects/example/baseline -O -c gram.c
cook: cc -I. -I/projects/example/baseline -O -c /projects/

example/baseline/lex.c
cook: cc -o example gram.o lex.o /projects/example/baseline/

main.o -ll -ly -lm
aegis: project "example": change 3: development build complete
sam%

Notice how the yacc run produces agram.hwhich logically invalidates thelex.o in the baseline, and so the
lex.c fi le in the baseline is recompiled, using thegram.hinclude file from the development directory, leav-
ing a newlex.oin the development directory. This is the reason for the use of

#include < filename>

directives, rather then the double quote form.

Now the change is tested.

sam% aet
aegis: logging to "/u/sam/example.1.0.C012/aegis.log"
aegis: sh /u/sam/example.1.0.C012/test/00/t0003a.sh
aegis: project "example.1.0": change 12: test "test/00/t0003a.sh"

passed
aegis: project "example.1.0": change 12: passed 1 test
sam%

The change must also be tested against the baseline, and fail. Samknows this, and does it here.

Peter Miller (bl/lib/en/user-guide/c2.1.so) Page 33

User Guide Aegis

sam% aet -bl
aegis: logging to "/u/sam/example.1.0.C012/aegis.log"
aegis: sh /u/sam/example.1.0.C012/test/00/t0003a.sh
1,3c1,6
< 1
< 2
< 3

> syntax error
> 5.3
> syntax error
> 4
> syntax error
> 27
FAILED
aegis: project "example.1.0": change 12: test "test/00/t0003a.sh" on

baseline failed (as it should)
aegis: project "example.1.0": change 12: passed 1 test
sam%

Running the regression tests is also a good idea.

sam% aet -reg
aegis: logging to "/u/sam/example.1.0.C012/aegis.log"
aegis: sh /projects/example/baseline/test/00/t0001a.sh
aegis: project "example.1.0": change 12: test "test/00/t0001a.sh"

passed
aegis: sh /projects/example/baseline/test/00/t0002a.sh
aegis: project "example.1.0": change 12: test "test/00/t0002a.sh"

passed
aegis: project "example.1.0": change 12: passed 2 tests
sam%

A this point Sam has just enough time to get to the lunchtime aerobics class in the staff common room.

Earlier the same day, Pat arrived for work a little after Sam, and also looked for a change to work on.

pat% aedb -l
Project "example.1.0"
List of Changes

Change State Description
------- ------- -------------

13 awaiting_ add variables
development

pat%

With such a wide choice, Pat selected change 13.

pat% aedb 13
aegis: project "example.1.0": change 13: development directory "/u/

pat/example.1.0.C013"
aegis: project "example.1.0": change 13: user "pat" has begun

development
pat% aecd
aegis: project "example.1.0": change 13: /u/pat/example.1.0.C013
pat%

To get more information about the change, Pat then uses the "change details" listing:

pat% ael cd
Project "example.1.0", Change 13
Change Details

Page 34 (bl/lib/en/user-guide/c2.1.so) Peter Miller

Aegis UserGuide

NAME
Project "example.1.0", Change 13.

SUMMARY
add variables

DESCRIPTION
Enhance the grammar to allow variables. Only single
letter variable names are required.

CAUSE
This change was caused by internal_enhancement.

STATE
This change is in ’being_developed’ state.

FILES
This change has no files.

HISTORY
What When Who Comment
------ ------ ----- ---------
new_change Mon Dec 14 alex

13:08:52 1992
develop_begin Tue Dec 15 pat

13:38:26 1992
pat%

To add the variables the grammar needs to be extended to understand them, and a new file for remembering
and recalling the values of the variables needs to be added.

pat% aecp gram.y
aegis: project "example.1.0": change 13: file "gram.y" copied
pat% aenf var.c
aegis: project "example.1.0": change 13: file "var.c" added
pat%

Notice how Aegis raises no objection to both Sam and Pat having a copy of thegram.yfi le. Resolvingthis
contention is the subject of this section.

Pat now edits the grammar file.

pat% vi gram.y
...edit the file...
pat% aed
aegis: logging to "/u/pat/example.1.0.C013/aegis.log"
aegis: set +e; diff -c /projects/example/baseline/gram.y /u/pat/

example.1.0.C013/gram.y > /u/pat/example.1.0.C013/gram.y,D; test $?
-eq 0 -o $? -eq 1

aegis: project "example.1.0": change 13: difference complete
pat%

The difference file looks like this

... hey, someone fill me in!...

The newvar.c fi le was created empty by Aegis, and Pat edits it to look like this:

static double memory[26];

Peter Miller (bl/lib/en/user-guide/c2.1.so) Page 35

User Guide Aegis

void
assign(name, value)

int name;
double value;

{
memory[name] = value;

}

double
recall(name)

int name;
{

return memory[name];
}

Little remains except to build the change.

pat% aeb
aegis: logging to "/u/pat/example.1.0.C013/aegis.log"
aegis: cook -b /example.proj/baseline/Howto.cook

project=example.1.0 change=13 version=1.0.C013 -nl
cook: yacc -d gram.y
cook: mv y.tab.c gram.c
cook: mv y.tab.h gram.h
cook: cc -I. -I/projects/example/baseline -O -c gram.c
cook: cc -I. -I/projects/example/baseline -O -c /projects/

example/baseline/lex.c
cook: cc -I. -I/projects/example/baseline -O -c var.c
cook: cc -o example gram.o lex.o /projects/example/baseline/

main.o var.o -ll -ly -lm
aegis: project "example.1.0": change 13: development build complete
pat%

A new test for the new functionality is required and Pat creates one like this.

:
here=‘pwd‘
if test $? -ne 0 ; then exit 1; fi
tmp=/tmp/$$
mkdir $tmp
if test $? -ne 0 ; then exit 1; fi
cd $tmp
if test $? -ne 0 ; then exit 1; fi

fail()
{

echo FAILED 1>&2
cd $here
chmod u+w ‘find $tmp -type d -print‘
rm -rf $tmp
exit 1

}
pass()
{

cd $here
chmod u+w ‘find $tmp -type d -print‘
rm -rf $tmp
exit 0

}
trap "fail" 1 2 3 15

Page 36 (bl/lib/en/user-guide/c2.1.so) Peter Miller

Aegis UserGuide

cat > test.in << ’end’
a = 1
a + 1
c = a * 40 + 5
c / (a + 4)
end
if test $? -ne 0 ; then fail; fi

cat > test.ok << ’end’
2
9
end
if test $? -ne 0 ; then fail; fi

$here/example test.in < /dev/null > test.out 2>&1
if test $? -ne 0 ; then fail; fi

diff test.ok test.out
if test $? -ne 0 ; then fail; fi

$here/example test.in test.out.2 < /dev/null
if test $? -ne 0 ; then fail; fi

diff test.ok test.out.2
if test $? -ne 0 ; then fail; fi

it p robably worked
pass

The new files are then differenced:

pat% aed
aegis: logging to "/u/pat/example.1.0.C013/aegis.log"
aegis: set +e; diff -c /projects/example/baseline/gram.y /u/pat/

example.1.0.C013/gram.y > /u/pat/example.1.0.C013/gram.y,D; test $?
-eq 0 -o $? -eq 1

aegis: set +e; diff -c /dev/null /u/pat/example.1.0.C013/test/00/
t0004a.sh > /u/pat/example.1.0.C013/test/00/t0004a.sh,D; test
$? -eq 0 -o $? -eq 1

aegis: set +e; diff -c /dev/null /u/pat/example.1.0.C013/var.c > /u/
pat/example.1.0.C013/var.c,D; test $? -eq 0 -o $? -eq 1

aegis: project "example.1.0": change 13: difference complete
pat%

Notice how the difference for thegram.yfi le is still current, and so is not run again.

The change is tested.

pat% aet
aegis: logging to "/u/pat/example.1.0.C013/aegis.log"
aegis: sh /u/pat/example.1.0.C013/test/00/t0001a.sh
aegis: project "example.1.0": change 13: test "test/00/t0004a.sh"

passed
aegis: project "example.1.0": change 13: passed 2 tests
pat%

The change is tested against the baseline.

Peter Miller (bl/lib/en/user-guide/c2.1.so) Page 37

User Guide Aegis

pat% aet -bl
aegis: logging to "/u/pat/example.1.0.C013/aegis.log"
aegis: sh /u/pat/example.1.0.C013/test/00/t0001a.sh
1,2c1,4
< 2
< 9

> syntax error
> syntax error
> syntax error
> syntax error
FAILED
aegis: project "example.1.0": change 13: test "test/00/t0004a.sh" on

baseline failed (as it should)
pat%

And the regression tests

pat% aet -reg
aegis: logging to "/u/pat/example.1.0.C013/aegis.log"
aegis: sh /projects/example/baseline/test/00/t0001a.sh
aegis: project "example.1.0": change 13: test "test/00/t0001a.sh"

passed
aegis: sh /projects/example/baseline/test/00/t0002a.sh
aegis: project "example.1.0": change 13: test "test/00/t0002a.sh"

passed
aegis: project "example.1.0": change 13: passed 2 tests
pat%

Note how test 3 has not been run, in any form of testing. This is because test 3 is part of another change,
and is not yet integrated with the baseline.

All is finished for this change,

pat% aede
aegis: sh /usr/local/lib/aegis/de.sh example.1.0 13 pat
aegis: project "example.1.0": change 13: development completed
pat%

Anxious to get this change into the baseline, Pat now wanders down the hall in search of a reviewer, but
more of that in the next section.

Some time later, San returns from aerobics feeling much improved. All that is required for change 12 is to
do develop end, or is it?

sam% aede
aegis: project "example.1.0": change 12: file "gram.y" in baseline

has changed since last ’aegis -DIFFerence’ command
sam%

A l ittle sleuthing on Sam’s part with the Aegis list command will reveal how this came about. The way to
resolve this problem is with the difference command, but the merge variant - this will merge the new base-
line version, and Sam’s edit together.

Page 38 (bl/lib/en/user-guide/c2.1.so) Peter Miller

Aegis UserGuide

sam% aem
aegis: logging to "/u/pat/example.1.0.C012/aegis.log"
aegis: co -u’1.1’ -p /projects/example/history/gram.y,v > /tmp/

aegis.14594
/projects/example/history/gram.y,v --> stdout revision 1.1 (unlocked)
aegis: (diff3 -e /projects/example/baseline/gram.y /tmp/

aegis.14594 /u/sam/example.003/gram.y | sed -e ’/ˆw$/d’
-e ’/ˆq$/d’; echo ’1,$p’) | ed - /projects/example/
baseline/gram.y,B > /u/sam/example.003/gram.y

aegis: project "example.1.0": change 12: merge complete
aegis: project "example.1.0": change 12: file "gram.y" was out of

date and has been merged, see "gram.y,B" for original source
aegis: new ’aegis -Build’ required
sam%

This was caused by the conflict between change 13, which is now integrated, and change 12; both of which
are editing thegram.yfi le. Samexamines thegram.yfi le, and is satisfied that it contains an accurate merge
of the edit done by change 13 and the edits for this change. The merged source file looks like this:

%{
#include <stdio.h>
#include <math.h>
%}
%token DOUBLE
%token NAME
%union
{

double lv_double;
int lv_int;

};

%type <lv_double> DOUBLE expr
%type <lv_int> NAME
%left ’+’ ’-’
%left ’*’ ’/’
%right ’ˆ’
%right UNARY

%%
example

: /* e mpty */
| e xample command ’\n’

{ y yerrflag = 0; fflush(stderr); fflush(stdout); }
;

command
: e xpr

{ p rintf("%g\n", $1); }
| N AME ’=’ expr

{ a ssign($1, $3); }
| e rror
;

Peter Miller (bl/lib/en/user-guide/c2.1.so) Page 39

User Guide Aegis

expr
: D OUBLE
| N AME

{ e xtern double recall(); $$ = recall($1); }
| ’ (’ expr ’)’

{ $$ = $ 2; }
| ’ -’ expr

%prec UNARY
{ $$ = - $2; }

| e xpr ’ˆ’ expr
{ $$ = p ow($1, $3); }

| e xpr ’*’ expr
{ $$ = $1 * $ 3; }

| e xpr ’/’ expr
{ $$ = $1 / $ 3; }

| e xpr ’+’ expr
{ $$ = $1 + $ 3; }

| e xpr ’-’ expr
{ $$ = $1 - $ 3; }

;

The automatic merge worked because most such conflicts are actually working on logically separate por-
tions of the file. Two different areas of the grammar in this case.In practice, there is rarely a real conflict,
and it is usually small enough to detect fairly quickly.

Sam now rebuilds:

sam% aeb
aegis: logging to "/u/sam/example.1.0.C012/aegis.log"
aegis: project "example.1.0": change 12: development build started
aegis: cook -b /projects/example/baseline/Howto.cook

project=example.1.0 change=12 version=1.0.C012 -nl
cook: rm gram.c
cook: rm gram.h
cook: yacc -d gram.y
cook: mv y.tab.c gram.c
cook: mv y.tab.h gram.h
cook: rm gram.o
cook: cc -I. -I/projects/example/baseline -O -c gram.c
cook: rm lex.o
cook: cc -I. -I/projects/example/baseline -O -c /projects/

example/baseline/lex.c
cook: rm example
cook: cc -o example gram.o lex.o /projects/example/baseline/

main.o /projects/example/baseline/var.o -ll -ly -lm
aegis: project "example.1.0": change 12: development build complete
sam%

Notice how the list of object files linked has also adapted to the addition of another file in the baseline,
without any extra work by Sam.

All that remains is to test the change again.

sam% aet
aegis: /bin/sh /u/sam/example.1.0.C012/test/00/t0003a.sh
aegis: project "example.1.0": change 12: test "test/00/t0003a.sh"

passed
aegis: project "example.1.0": change 12: passed 1 test
sam%

And test against the baseline,

Page 40 (bl/lib/en/user-guide/c2.1.so) Peter Miller

Aegis UserGuide

sam% aet -bl
aegis: /bin/sh /u/sam/example.1.0.C012/test/00/t0003a.sh
1,3c1,6
< 1
< 2
< 3

> syntax error
> 5.3
> syntax error
> 4
> syntax error
> 27
FAILED
aegis: project "example.1.0": change 12: test "test/00/t0003a.sh" on

baseline failed (as it should)
aegis: project "example.1.0": change 12: passed 1 test
sam%

Perform the regression tests, too. This is important for a merged change, to make sure you didn’t break the
functionality of the code you merged with.

sam% aet -reg
aegis: logging to "/u/sam/example.1.0.C012/aegis.log"
aegis: /bin/sh /projects/example/baseline/test/00/

t0001a.sh
aegis: project "example.1.0": change 12: test "test/00/t0001a.sh"

passed
aegis: /bin/sh /projects/example/baseline/test/00/

t0002a.sh
aegis: project "example.1.0": change 12: test "test/00/t0002a.sh"

passed
aegis: /bin/sh /projects/example/baseline/test/00/

t0004a.sh
aegis: project "example.1.0": change 12: test "test/00/t0004a.sh"

passed
aegis: project "example.1.0": change 12: passed 3 tests
sam%

All done, or are we?

sam% aede
aegis: project "example.1.0": change 12: no current ’aegis -Diff’

registration
sam%

The difference we did earlier, which revealed that we were out of date, does not show the differences since
the two changes were merged, and possibly further edited.

sam% aed
aegis: logging to "/u/sam/example.1.0.C012/aegis.log"
aegis: set +e; diff /projects/example/baseline/gram.y /u/pat/

example.1.0.C012/gram.y > /u/pat/example.1.0.C012/gram.y,D;
test $? -le 1

aegis: project "example.1.0": change 12: difference complete
sam%

This time everything will run smoothly,

sam% aede
aegis: project "example.1.0": change 12: development completed
sam%

Some time soon Sam will receive email that this change passed review, and later that it passed integration.

Within the scope of a limited example, you have seen most of what Aegis can do.To get a true feeling for
the program you need to try it in a similarly simple case.You could even try doing this example manually.

Peter Miller (bl/lib/en/user-guide/c2.1.so) Page 41

User Guide Aegis

3.1.5. Developer Command Summary

Only a few of the Aegis commands available to developers have been used in the example. Thefollowing
table (very tersely) describes the Aegis commands most useful to developers.

Command Description

aeb Build
aeca editChange Attributes
aecd ChangeDirectory
aeclean Cleana dev elopment directory
aeclone copy a whole change
aecp Copy File
aecpu Copy File Undo
aed Difference
aedb Develop Begin
aedbu Dev elop Begin Undo
aede Develop End
aedeu Develop End Undo
ael ListStuff
aenf New File
aenfu New File Undo
aent New Test
aentu New Test Undo
aerm Remove File
aermu Remove File Undo
aet Test

You will want to read the manual entries for all of these commands.Note that all Aegis commands have a
−Help option, which will give a result very similar to the correspondingman(1) output. Most Aegis com-
mands also have a−List option, which usually lists interesting context sensitive information.

Page 42 (bl/lib/en/user-guide/c2.2.so) Peter Miller

Aegis UserGuide

3.2. TheReviewer

The role of a reviewer is to check another user’s work. You are helped in this by Aegis, because changes
can never reach thebeing reviewedstate without several preconditions:

• The change is known to build. You know that it compiled successfully, so there is no need to search for
syntax errors.

• The change has tests, and those tests have been run, and have passed.

This information allows you to concentrate on implementation issues, completeness issues, and local stan-
dards issues.

To help the reviewer, a set of "comma D" files is available in the change development directory. Every file
which is to be added to the baseline, removed from the baseline, or changed in some way, has a correspond-
ing "comma D" file.

3.2.1. Before You Start

Have you configured your account to use Aegis? SeetheUser Setupsection of theTips and Trapschapter
for how to do this.

3.2.2. TheFirst Change

Robyn finds out what changes are available for review by asking Aegis:

robyn% aerpass -l -p example.1.0

Project "example.1.0"
List of Changes

Change State Description
------- ------- -------------

10 being_reviewed Place under Aegis
robyn%

Any of the above changes could be reviewed, Robyn chooses the first.

robyn% aecd -p example.1.0 -c 10
aegis: project "example": change 1: /u/pat/example.1.0.C010
robyn% aedmore
...examines each file...
robyn%

The aedmorecommand walks the development directory tree to find all of the "comma D" files, and dis-
plays them usingmore(1). Thereis a correspondingaedlessfor those who prefer theless(1) command.

Once the change has been reviewed and found acceptable, it is passed:

robyn% aerpass -p example.1.0 10
aegis: sh /usr/local/lib/aegis/rp.sh example.1.0 10 pat robyn
aegis: project "example.1.0": change 10: passed review
robyn%

Some time soon Isa will notice the email notification and commence integration of the change.

3.2.3. TheSecond Change

Most reviews have the same pattern as the first.

Peter Miller (bl/lib/en/user-guide/c2.2.so) Page 43

User Guide Aegis

robyn% aerpass -l -p example.1.0

Project "example.1.0"
List of Changes

Change State Description
------- ------- -------------

11 being_reviewed file names on command line
robyn%

Always change directory to the change’s dev elopment directory, otherwise you will not be able to review
the files.

robyn% aecd -p example.1.0 -c 11
aegis: project "example.1.0": change 11: /u/jan/example.1.0.C011
robyn%

Another useful way of finding out about a change is the "list change details" command, viz:

robyn% ael cd -p example.1.0 -c 11

Project "example.1.0", Change 11
Change Details

NAME
Project "example.1.0", Change 11.

SUMMARY
file names on command line

DESCRIPTION
Optional input and output files may be specified on
the command line.

CAUSE
This change was caused by internal_bug.

STATE
This change is in ’being_reviewed’ state.

FILES
Type Action Edit File Name
------- ------- ------- -----------
source modify 1.1 main.c
test create test/00/t0002a.sh

HISTORY
What When Who Comment
------ ------ ----- ---------
new_change Fri Dec 11 alex

14:55:06 1992
develop_begin Mon Dec 14 jan

09:07:08 1992
develop_end Mon Dec 14 jan

11:43:23 1992
robyn%

Once Robyn knows what the change is meant to be doing, the files are then examined:

robyn% aedmore
...examines each file...
robyn%

Page 44 (bl/lib/en/user-guide/c2.2.so) Peter Miller

Aegis UserGuide

Once the change is found to be acceptable, it is passed:

robyn% aerpass -p example.1.0 11
aegis: sh /usr/local/lib/aegis/rp.sh example.1.0 11 jan robyn
aegis: project "example.1.0": change 11: passed review
robyn%

Some time soon Isa will notice the email notification and commence integration of the change.

The reviews of the third and fourth changes will not be given here, because they are almost identical to the
other changes. If you want to know how to fail a review, see theaerfail(1) manual entry.

3.2.4. Reviewer Command Summary

Only a few of the Aegis commands available to reviewers have been used in this example. Thefollowing
table (very tersely) describes the Aegis commands most useful to reviewers.

Command Description

aecd ChangeDirectory
aerpass Review Pass
aerpu Review Pass Undo
aerfail Review Fail
ael ListStuff

You will want to read the manual entries for all of these commands.Note that all Aegis commands have a
−Help option, which will give a result very similar to the correspondingman(1) output. Most Aegis com-
mands also have a−List option, which usually lists interesting context sensitive information.

Peter Miller (bl/lib/en/user-guide/c2.3.so) Page 45

User Guide Aegis

3.3. TheIntegrator

This section shows what the integrator must do for each of the changes shown to date.The integrator does
not have the ability to alter anything in the change; if a change being integrated is defective, it is simply
failed back to the developer. This documented example has no such failures, in order to keep it manageably
small.

3.3.1. Before You Start

Have you configured your account to use Aegis? SeetheUser Setupsection of theTips and Trapschapter
for how to do this.

3.3.2. TheFirst Change

The first change of a project is often the trickiest, and the integrator is the last to know. This example goes
smoothly, and you may want to consider using the example project as a template.

The integrator for this example project is Isa. Isa knows there is a change ready for integration from the
notification which arrived by email.

isa% aeib -l -p example.1.0

Project "example.1.0"
List of Changes

Change State Description
------- ------- -------------

10 awaiting_ Place under Aegis
integration

isa% aeib example.1.0 10
aegis: project "example.1.0": change 10: link baseline to integration

directory
aegis: project "example.1.0": change 10: apply change to integration

directory
aegis: project "example.1.0": change 10: integration has begun
isa%

The integrator must rebuild and retest each change.This ensures that it was no quirk of the developer’s
environment which resulted in the success at the development stage.

isa% aeb
aegis: logging to "/projects/example/delta.001/aegis.log"
aegis: project "example.1.0": change 10: integration build started
aegis: cook -b Howto.cook project=example.1.0 change=10

version=1.0.D001 -nl
cook: yacc -d gram.y
cook: mv y.tab.c gram.c
cook: mv y.tab.h gram.h
cook: cc -I. -O -c gram.c
cook: lex lex.l
cook: mv lex.yy.c lex.c
cook: cc -I. -O -c lex.c
cook: cc -I. -O -c main.c
cook: cc -o example gram.o lex.o main.o -ll -ly
aegis: project "example.1.0": change 10: integration build complete
isa%

Notice how the above build differed from the builds that were done while in thebeing developedstate; the
extra baseline include is gone. This is because the integration directory will shortly be the new baseline,
and must be entirely internally consistent and self-sufficient.

You are probably wondering why this isn’t all rolled into the one Aegis command. It is not because there
may be some manual process to be performed after the build and before the test. This may be making a
command set-uid-root (as in the case of Aegis itself) or it may require some tinkering with the local oracle
or ingress database. Instructions for the integrator may be placed in the description field of the change

Page 46 (bl/lib/en/user-guide/c2.3.so) Peter Miller

Aegis UserGuide

attributes.

The change is now re-tested:

isa% aet
aegis: logging to "/projects/example/delta.001/aegis.log"
aegis: sh /project/example/delta.001/test/00/t0001a.sh
aegis: project "example": change 1: test "test/00/t0001a.sh"

passed
aegis: project "example": change 1: passed 1 test
isa%

The change builds and tests. Once Isa is happy with the change, perhaps after browsing the files, Isa then
passes the integration, causing the history files to be updated and the integration directory becomes the
baseline.

isa% aeipass
aegis: logging to "/projects/example/delta.001/aegis.log"
aegis: ci -u -m/dev/null -t/dev/null /projects/example/delta.001/

Howto.cook /projects/example/history/Howto.cook,v;
rcs -U /projects/example/history/Howto.cook,v

/projects/example/history/Howto.cook,v <--
/projects/example/delta.001/Howto.cook

initial revision: 1.1
done
RCS file: /projects/example/history/Howto.cook,v
done
aegis: rlog -r /projects/example/history/Howto.cook,v | awk

’/ˆrevision/ {print $2}’ > /tmp/aegis.15309
...lots of similar RCS output...
aegis: project "example.1.0": change 10: remove development directory
aegis: sh /usr/local/lib/aegis/ip.sh example.1.0 10 pat robyn isa
aegis: project "example.1.0": change 10: integrate pass
isa%

All of the staff inv olved, will receive email to say that the change has been integrated. Thisnotification is a
shell script, so USENET could be usefully used instead.

You should note that the development directory has been deleted. It is expected that each develop-
ment directory will only contain files necessary to develop the change.You should keep "precious" files
somewhere else.

3.3.3. TheOther Changes

There is no difference to integrating any of the later changes. The integration process is very simple, as it is
a cut-down version of what the developer does, without all the complexity.

Your project may elect to have the integrator also monitor the quality of the reviews. An answer to "who
will watch the watchers" if you like.

It is also a good idea to rotate people out of the integrator position after a few weeks in a busy project, this
is a very stressful position.The position of integrator gives a unique perspective to software quality, but the
person also needs to be able to say "NO!" when a cruddy change comes along.

Peter Miller (bl/lib/en/user-guide/c2.3.so) Page 47

User Guide Aegis

3.3.4. IntegratorCommand Summary

Only a few of the Aegis commands available to integrators have been used in this example. Thefollowing
table (very tersely) describes the Aegis commands most useful to integrators.

Command Description

aeb Build
aecd ChangeDirectory
aed Difference
aeib Integrate Begin
aeibu Integrate Begin Undo
aeifail Integrate Fail
ael ListStuff
aet Test
aeipass Integrate Pass

You will want to read the manual entries for all of these commands.Note that all Aegis commands have a
−Help option, which will give a result very similar to the correspondingman(1) output. Most Aegis com-
mands also have a−List option, which usually lists interesting context sensitive information.

3.3.5. Minimum Integrations

The aegis --integrate-begincommand provides a--minimum option which may be used for various rea-
sons. Theterm minimum may be a bit counter intuitive. One might think it means to theminimum
amount of work, however it actually means use aminimum of files from the baseline in populating the
delta directory. This normally leads to actually building everything in the project from sources and, as
such, might be considered the most robust of builds.

Note that any change which removes a file, whether byaermor aemv, results in an implicitminimum inte-
gration. Thisis intended to ensure nothing in the project references the removed file.

A project may adopt a policy that a product release should be based on a minimum integration. Sucha pol-
icy may be a reflection of local confidence, or lack therof, in the projects DMT (Dependency Maintenance
Tool) or build system. Or it may be based on a validation process wishing to make a simple statement on
how the released package was produced.

Another, more transient, reason a to require a minimum integration might be when upgrading a third party
library, compiler or maybe even OS lev el. Any of these events would signal the need for a minimum inte-
gration to ensure everything is rebuilt using the new resources.

The cost of aminimum integration varies according to type and size of the project.For very large projects,
especially those building large numbers of binaries, the cost can be large. However large projects also
require significant time to fully populate the delta directory. A minimum integration only copies those files
under aegis control, skipping all “produced” files. In the case where a file upon which everything depends
is changed, everything will be built anyway so the copy of the already built files is a waste of time.This
means that sometimes a minimum can be as cheap as a normal integration.

Page 48 (bl/lib/en/user-guide/c2.4.so) Peter Miller

Aegis UserGuide

3.4. TheAdministrator

The previous discussion of developers, reviewers and integrators has covered many aspects of the produc-
tion of software using Aegis. Theadministrator has responsibility for everything they don’t, but there is
very little left.

These responsibilities include:

• access control: The administrator adds and removes all categories of user, including administrators.This
is on a per-project basis, and has nothing to do withUNIX user administration. This simply nominates
which users may do what.

• change creation: The administrator adds (and sometimes removes) changes to the system. At later stages,
developers may alter some attributes of the change, such as the description, to say what they fixed.

• project creation: Aegis does not limit who may create projects, but when a project is created the user who
created the project is set to be the administrator of that project.

All of these things will be examined

3.4.1. Before You Start

Have you configured your account to use Aegis? SeetheUser Setupsection of theTips and Trapschapter
for how to do this.

3.4.2. TheFirst Change

Many things need to happen before development can begin on the first change; the project must be created,
the staff but be given access permissions, the branches created, and the change must be created.

alex% aenpr example -dir /projects/example -version -
aegis: project "example": project directory "/projects/example"
aegis: project "example": created
alex%

Once the project has been created, the project attributes are set.Alex will set the desired project attributes
using the-Edit option of theaepa command. Thiswill invoke an editor (vi(1) by default) to edit the
project attributes. Alex edits them to look like this:

description = "Aegis Documentation Example Project";
developer_may_review = false;
developer_may_integrate = false;
reviewer_may_integrate = false;

The project attributes are set as follows:

alex% aepa -edit -p example
...edit as above...
aegis: project "example.1.0": attributes changed
alex% ael p
List of Projects

Project Directory Description
------- ----------- -------------
example /projects/example Aegis Documentation Example

Project
alex%

The various staff must be added to the project. Developers are the only staff who may actually edit files.

alex% aend pat jan sam -p example
aegis: project "example": user "pat" is now a developer
aegis: project "example": user "jan" is now a developer
aegis: project "example": user "sam" is now a developer
alex%

Reviewers may veto a change. There may be overlap between the various categories, as show here for Jan:

Peter Miller (bl/lib/en/user-guide/c2.4.so) Page 49

User Guide Aegis

alex% aenrv robyn jan -p example
aegis: project "example": user "robyn" is now a reviewer
aegis: project "example": user "jan" is now a reviewer
alex%

The next role we need to fill is an integrator.

alex% aeni isa -p example
aegis: project "example": user "isa" is now an integrator
alex%

Once the staff hav e been given access, it is time to create the working branch. Branches inherit their
attributes and staff l ists from their parent branches when they are first created, which is why we set all that
stuff f irst.

alex% aegis -nbr -p example 1
aegis: project "example.1": created
alex% aegis -nbr -p example.1 0
aegis: project "example.1.0": created
alex%

This is for versioning; see theBranchingchapter for more information.For the moment, we will simply
work on branch 1.0. Notice how the branches appear as projects in the project listing; in general branches
can be used interchangeably with projects.

alex% ael p
List of Projects

Project Directory Description
------- ----------- -------------
example /projects/example Aegis Documentation Example

Project
example.1 /projects/example/ Aegis Documentation Example

branch.1 Project, branch.1.
example.1.0 /projects/example/ Aegis Documentation Example

branch.1/branch.0 Project, branch.1.0.
alex%

Once the working branch has been created, Alex creates the first change.The -Edit option of theaenc
command is used, to create the attributes of the change. They are edited to look like this:

brief_description = "Create initial skeleton.";
description = "A simple calculator using native \
floating point precision. \
The four basic arithmetic operators to be provided, \
using conventional infix notation. \
Parentheses and negation also required.";
cause = internal_enhancement;

The change is created as follows:

alex% aenc -edit -p example.1.0
...edit as above...
aegis: project "example.1.0": change 10: created
alex%

Notice that the first change number is “10”. This is done so that changes 1 to 9 could be used as bug-fix
branches at some future time. See theBranchingchapter for more information.You can over-ride this is
you need to.

The above was written almost a decade ago.There is a newer command,tkaenc, which uses a GUI and is
much easier to use, with a much less fiddly interface. You may want to try that command, instead, for most
routine change creation.

At this point, Alex walks down the hall to Pat’s off i ce, to ask Pat to develop the first change.Pat has had
some practice using Aegis, and can be relied on to do the rest of the project configuration speedily.

Page 50 (bl/lib/en/user-guide/c2.4.so) Peter Miller

Aegis UserGuide

3.4.3. TheSecond Change

Some time later, Alex patiently sits through the whining and grumbling of an especially pedantic user. The
following change description is duly entered:

brief_description = "file names on command line";
description = "Optional input and output files may be \
specified on the command line.";
cause = internal_bug;

The pedantic user wanted to be able to name files on the command line, rather than use I/O redirection.
Also, having a bug in this example is useful. The change is created as follows:

alex% aenc -edit -p example.1.0
...edit as above...
aegis: project "example.1.0": change 11: created
alex%

At some point a developer will notice this change and start work on it.

3.4.4. TheThird Change

Other features are required for the calculator, and also for this example. Thethird change adds exponentia-
tion to the calculator, and is described as follows:

brief_description = "add powers";
description = "Enhance the grammar to allow exponentiation. \
No error checking required.";
cause = internal_enhancement;

The change is created as follows:

alex% aenc -edit -p example.1.0
...edit as above...
aegis: project "example.1.0": change 12: created
alex%

At some point a developer will notice, and this change will be worked on.

3.4.5. TheFourth Change

A fourth change, this time adding variables to the calculator is added.

brief_description = "add variables";
description = "Enhance the grammar to allow variables. \
Only single letter variable names are required.";
cause = internal_enhancement;

The change is created as follows:

alex% aenc -edit -p example.1.0
...edit as above...
aegis: project "example.1.0": change 13: created
alex%

At some point a developer will notice, and this change will be worked on.

3.4.6. Administrator Command Summary

Only a few of the Aegis commands available to administrators have been used in this example. Thefollow-
ing table lists the Aegis commands most useful to administrators.

Command Description

aeca editChange Attributes
ael ListStuff

Peter Miller (bl/lib/en/user-guide/c2.4.so) Page 51

User Guide Aegis

aena New Administrator
aenc New Change
aencu New Change Undo
aend New Dev eloper
aeni New Integrator
aenpr New Project
aenrv New Reviewer
aepa editProject Attributes
aera Remove Administrator
aerd Remove Dev eloper
aeri Remove Integrator
aermpr Remove Project
aerrv Remove Reviewer

You will want to read the manual entries for all of these commands.Note that all Aegis commands have a
−Help option, which will give a result very similar to the correspondingman(1) output. Most Aegis com-
mands also have a−List option, which usually lists interesting context sensitive information.

Page 52 (bl/lib/en/user-guide/c2.0.so) Peter Miller

Aegis UserGuide

3.5. What to do Next

This chapter has given an overview of what using
Aegis feels like. Asa next step in getting to know
Aegis, it would be a good idea if you created a
project and went through this same exercise. You
could use this exact example, or you could use a
similar small project. The idea is simply to run
through many of the same steps as in the example.
Typos and other natural events will ensure that
you come across a number of situations not
directly covered by this chapter.

If you have not already done do, a printed copy of
the section 1 and 5 manual entries will be invalu-
able. If you don’t want to use that many trees,
they will be available on-line, by using the
"-Help" option of the appropriate command vari-
ant. Try:

% aedb -help
...manual entry...
%

Note that this example has not demonstrated all of
the available functionality. One item of particular
interest is that tests, like any other source file,
may be copied into a change and modified, or
ev en deleted, just like any other source file.

3.6. CommonQuestions

There are a number of questions which are fre-
quently asked by people evaluating Aegis. This
section attempts to address some of them.

3.6.1. Insulation

The repository model used by Aegis is of the
“push” type - that is, changes to the baseline are
“pushed” onto the developer as soon as they are
integrated. Many configuration management sys-
tems have a “pull” model, where the developer
elects when to cope with changes in the reposi-
tory. At first glance, Aegis does not appear to
have a “pull” equivalent.

It is possible to insulate your change from the
baseline as much or as little as required.The
aecp(1) command, used to copy files into a
change, has a--read-only option. Thefi les
copied in this way are marked as insulation (i.e.
you don’t intend to change them).If you have not
un-copied them at develop end time, theaede(1)
command will produce a suitable error message,
reminding you to un-copy the insulation and ver-
ify that your change still builds and tests success-
fully with the (probably) now-different baseline.

3.6.1.1. CopyRead-Only

It is possible to select the degree of insulation.
By using “aecp . ” at the top of a development
directory, the complete project source tree will be
copied, thus completely insulating you.Mind
you, it comes at the cost of a complete build.

If you are working on a library, and only want the
rest of the library to remain fixed, simply copy the
whole library (aecp library/fred), and
allow the rest to track the baseline. This comes at
a smaller cost, because more of the baseline’s
object files can be taken advantage of.

3.6.1.2. Branches

It is also possible to create a sub-branch (see the
Branchingchapter). Thisdoes not itself automat-
ically insulate, however the first change of a
branch intended to insulate would copy and inte-
gratebut not modifythe files to be insulated.You
need to remember to perform across-branch
merge with the parent branch before integrating
the branch back into the parent branch.

3.6.1.3. Builds

You can also insulate yourself from baseline
change by being selective about what you choose
to build. You can do this by giving specific build
targets on theaeb(1) command line, or you could
copy the build tool’s configuration file and
butcher it. Remember to change it back before
youaede(1) your change!

3.6.1.4. Mix-and-Match

Some or all of the above techniques may be com-
bined to provide an insulation technique best
suited to your project and development policy.
E.g. changing the build configuration file for a
branch dedicated to working on a small portion of
a large project; towards the ed of the develop-
ment, change the build configuration file back and
perform integration testing.

3.6.1.5. Disadvantages

There is actually a down-side to insulating your
changes from the evolution of the baseline.By
noticing and adapting to the baseline, you have
much less merging to do at the end of your
change set. Each integration will typically be be
modest, but the cumulative effect could be sub-
stantial, and add a huge unexpected (and un-bud-
geted for) time penalty.

Peter Miller (bl/lib/en/user-guide/c2.6.so) Page 53

User Guide Aegis

It also means that if there are integration problems
between your work and the changes which were
integrated before yours, or if your work shows up
a bug in their work, the project find this out late,
rather than early. The literature, based on indus-
trial experience, indicates that the earlier prob-
lems are found the cheaper they are to fix.

Insulated development directories also use more
disk space. While disk space is relatively cheap
these days, it can still add up to a substantial hit
for a large development team. Un-insulated
development directories can take advantage of the
pre-compiled objects and libraries in the baseline.

3.6.2. Partial Check-In

In the course of developing new functionality, it is
very common to come across a pre-existing bug
which the new functionality exposes. Itis com-
mon for such bugs to be fixed by the developer in
the same development directory, in order to get
the new functionality to a testable state.

There are two common courses of action at this
point: simply include the bug fix with the rest of
the change, or integrate the bug fix earlier than
the rest of the change. Combining the bug fix
with the rest of the change can have nasty effects
on statistics: it can hide the true bug level f rom
your metrics program, and it also denies Aegis the
opportunity of having accurate test correlations
(seeaet(1) for more information.) It also denies
the rest of the development team the use of the
bug fix, or worse, it allows the possibility that
more than one team member will fix the bug,
wasting development effort and time.

Many configuration management systems allow
you to perform a partial check-in of a work area.
This means that you can check-in just the bug fix,
but continue to work on the unfinished portions of
the functionality you are implementing.

Because Aegis insists on atomic change sets
which are known to build and test successfully,
such a partial check-in is not allowed - because
Aegis can’t know for certain that it works.

Instead, you are able toclone a change (see
aeclone(1) for more information).This gives you
a new change, and a second development direc-
tory, with exactly the same files. You then
remove from this second change all of the files
not related to the bug fix (using aecpu(1),
aenfu(11), etc). You then create a test, build, dif-
ference, run the test, develop end, all as usual.

The original change will then need to be merged
with the baseline, because the bug fix change will
have been integrated before it.Usually this is
straight-forward, as you already have the changes
(some merge tools make this harder than others).
Often, all that is required is to merge, and then
say “aecpu -unch ” to un-copy all files which
are (now) unchanged when compared to the cur-
rent baseline.

3.6.3. Multiple Active Branches

Some companies have multiple branches active at
the same time, for different customers or distribu-
tions,etc.

They often need to make the same change to more
than one branch. Some configuration manage-
ment systems allow you to check-in the same file
multiple times, once to each active branch. Aegis
does not let you do this, because you need to con-
vince Aegis that the change set will build and test
cleanly on each branch. It is quite common for
the change to require non-trivial edits to work on
each branch.

3.6.3.1. Cloning

Aegis instead provides two mechanisms to handle
this. Thefi rst, and simplest to understand, is to
clone the change onto each relevant branch (rather
than onto the same branch, as mentioned above
for bug fixes). Thenbuild and test as normal.

3.6.3.2. Ancestral

The second technique is more subtle. Perform the
fix as a change to the common ancestor of both
branches. Thisassumes that neither branch is
insulated against the relevant area of code, and
that earlier changes to the branch do not mask it
in some way (otherwise a cross-branch merge
with the common ancestor will be needed to prop-
agate the fix).

3.6.4. Collaboration

It is often the case that difficult problems are tack-
led by small groups of 2 or 3 staff working
together. In order to do this, they often work in a
shared work area with group-writable or global-
write permissions.However, this tends to give
security auditor heart attacks.

Aegis has several different ways to achieve the
same ends, and still not give the auditors indiges-
tion.

Page 54 (bl/lib/en/user-guide/c2.6.so) Peter Miller

Aegis UserGuide

3.6.4.1. ChangeOwner

The simplest method available is to change the
ownership of a change from one developer to the
next. A new dev elopment directory is created for
the new dev eloper, and the source files are copied
across15. This allows a kind of serial collabora-
tion between developers.

3.6.4.2. Branch

The other possibility is to create a branch to per-
form the work in, rather than a simple change.(A
branch in Aegis is literally just a big change,
which has lots of sub-changes.) This allows par-
allel collaboration between developers.

3.6.4.3. View Path Hacking

Aegis usually provides a “view path” to the build
tool. Thisspecifies where to look for source files
and derived files, in order to union together the
development directory, and the baseline, and the
branch’s ancestors’ baselines.If you run the build
by hand, rather than through Aegis, you can add
another developer’s dev elopment directory to the
view path, after your own development directory,
but before the baseline.

This has many of the advantages of the branch
method, but none of the safeguards. Inparticular,
if the other developer edits a file, and it no longer
compiles, your development directory will not,
either.

15 For the technically minded: thechown(2) sys-
tem call has semantics which vary too widely
betweenUNIX variants and file-systems to be useful.

Peter Miller (bl/lib/en/user-guide/c3.0.so) Page 55

User Guide Aegis

4. TheHistory Tool

Aegis is decoupled from the history mechanism.
This allows you to use the history mechanism of
your choice, SCCS or RCS, for example. You
may even wish to write your own.

The intention of this is that you may use a history
mechanism which suits your special needs, or the
one that comes free with your flavour of UNIX

operating system.

Aegis uses the history mechanism for file history
and so does not require many of the features of
SCCS or RCS. This simplistic approach can
sometimes make the interface to these utilities
look a little strange.

4.1. History File Names

In order to track project source file renames and
yet preserve a continuous history, the name of
each source file and the name of each correspond-
ing history file have nothing in common.The his-
tory file will have the same name (both on the
local repository and any remote repository it is in)
no matter how many times the source file is
renamed.

Each source file is assigned universally unique
identifier (UUID) when it is first created.This
attribute, unlike the source file’s name, is
immutable and thus is suitable for use when form-
ing the name of the history file.

4.2. Interfacing

The history mechanism interface is found in the
project configuration file calledaegis.conf, rela-
tive to the root of the baseline.It is a source file
and subject to the same controls as any other
source file. The history fields of the file are
described as follows

4.2.1. history_create_command

This field is used to create a new history. The
command is always executed as the project owner.
Substitutions available for the command string
are:

${Input}
absolute path of source file

${History}
absolute path of history file

In addition, all substitutions described inaesub(5)
are available.

This command should be identical to thehistory_-
put_commandotherwise mysterious things can

happen when branches are ended.

4.2.2. history_get_command

This field is used to get a file from history. The
command may be executed by developers. Sub-
stitutions available for the command string are:

${History}
absolute path of history file

${Edit}
edit number, as giv en by the history_-
query_command.

${Output}
absolute path of destination file

In addition, all substitutions described inaesub(5)
are available.

4.2.3. history_put_command

This field is used to add a new change to the his-
tory. The command is always executed as the
project owner. Substitutions available for the
command string are:

${Input}
absolute path of source file

${History}
absolute path of history file

In addition, all substitutions described inaesub(5)
are available.

This command should be identical to thehistory_-
create_commandotherwise mysterious things can
happen when branches are ended.

4.2.4. history_query_command

This field is used to query the topmost edit of a
history file. Resultto be printed on the standard
output. This command may be executed by
developers. Substitutionsavailable for the com-
mand string are:

${History}
absolute path of history file

In addition, all substitutions described inaesub(5)
are available.

4.2.5. history_content_limitation

This field describes the content style which the
history tool is capable of working with.

ascii_text
The history tool can only cope with files
which contain printable ASCII characters,
plus space, tab and newline. Thefi le must
end with a newline. Thisis the default.

Page 56 (bl/lib/en/user-guide/c3.0.so) Peter Miller

Aegis UserGuide

international_text
The history tool can only cope with files
which do not contain the NUL character.
The file must end with a newline.

binary_capable
The history tool can cope with files without
any limitation on the form of the contents.

When a file is added to the history (by either the
history_create_commandor the history_put_-
commandfield) it is examined for conformance to
this limitation. If there is a problem, the file is
encoded in either the MIME quoted printable or
the MIME Base 64 encoding (see RFC 1521),
whichever is smaller, before being given to the
history tool. The file in the baseline is
unchanged.

On extract (thehistory_get_commandfield) the
encoding is reversed, using information attached
to the change file information. This is because
each put could use a different encoding (although
in practice, file contents rarely change that dra-
matically, and the same encoding is likely to be
deduced every time).

4.2.6. history_tool_trashes_file

Many history tools (e.g. RCS) can modify the
contents of the file when it is committed.While
there are usually options to turn this off, they are
seldom used.The problem is: if the commit
changes the file, the source in the repository now
no longer matches the object file in the repository
- i.e. the history tool has compromised the refer-
ential integrity of the repository.

By default, when this happens Aegis issues a fatal
error (at intergate passtime). You can turn this
into a warning if you are convinced this is irrele-
vant. This would only make sense if the substi-
tion only ever occurs in comments.See aep-
conf(5) for more information on the values for
this field.

4.2.7. QuotingFilenames

The default setting is for Aegis to reject filenames
which contain shell special characters.This
ensures that filenames may be substituted into the
commands without worrying about whether this is
safe. If you set theshell_safe_filenamesfield of
the projectaegis.conffi le to false , you will
need to surround filenames with the${quote
filename} substitution. Thiswill only quote file-
names which actually need to be quoted, so users
usually will not notice. This applies to all of the
various filenames in the commands in the sections

which follow.

4.2.8. Templates

The source distribution contains numerous config-
uration examples in a directory calledlib/con-
fig.example/ which is installed into
/usr/local/share/aegis/config.example/by default.
In the interests of accuracy, it may be best to copy
configurations from there, rather than copy-type
the ones below.

Peter Miller (bl/lib/en/user-guide/c3.5.so) Page 57

User Guide Aegis

4.3. Usingaesvt

The aesvt(1) command is distributed with Aegis.
It supports binary files, has versy small history
fi les, and has good end-to-end behaviour. The
entries for the commands are listed below.

4.3.1. history_create_command

This command is used to create a new file history.
This command is always executed as the project
owner.

The following substitutions are available:

${Input}
absolute path of the source file

${History}
absolute path of the history file

The entry in theaegis.conffi le looks like this:

history_create_command =
"aesvt -checkin "
"-history $history "
"-f $input"
;

4.3.2. history_put_command

It is essential that thehistory_create_command
and thehistory_put_commandare identical. It is
a historical accident that there are two separate
commands: before Aegis supported branches, this
was not a requirement.

4.3.3. history_get_command

This command is used to get a specific edit back
from history. This command is always executed
as the project owner.

The following substitutions are available:

${History}
absolute path of the history file

${Edit}
edit number, as giv en by history_query_-
command

${Output}
absolute path of the destination file

The entry in theaegis.conffi le looks like this:

history_get_command =
"aesvt -checkout "
"-history $history "
"-edit $edit "
"-o $output"
;

4.3.4. history_query_command

This command is used to query what the history
mechanism calls the top-most edit of a history
fi le. The result may be any arbitrary string, it
need not be anything like a number, just so long
as it uniquely identifies the edit for use by thehis-
tory_get_commandat a later date. The edit num-
ber is to be printed on the standard output.This
command is always executed as the project owner.

The following substitutions are available:

${History}
absolute path of the history file

The entry in theaegis.conffi le looks like this:

history_query_command =
"aesvt -query "
"-history $history"
;

4.3.5. Templates

The lib/config.example/aesvtfi le in the Aegis dis-
tribution (installed as/usr/local/share/aegis/con-
fig.example/aesvtby default) contains all of the
above commands, so that you may readily insert
them into your project configuration file.

Also, there are some subtleties to writing the
commands, which are not present in the above
examples. Inparticular, being able to support file
names which contain characters which are special
to the shell requires the use of the ${quote} sub-
stitution around all of the files names in the com-
mands.

In addition, it is possible to store meta-date with
each version. For example: “Descrip-
tion=${quote ($version) ${change
description}} ” i nserts the version number
and the brief description into the file’s log. This
means that using theaesvt -listoption will pro-
vide quite useful summaries.

4.3.6. BinaryFiles

Theaesvt(1) command is able to cope with binary
fi les. Set

history_content_limitation =
binary_capable;

so that Aegis knows that no encoding is required.

Page 58 (bl/lib/en/user-guide/c3.1.so) Peter Miller

Aegis UserGuide

4.4. UsingSCCS

The entries for the commands are listed below.
SCCS uses a slightly different model than Aegis
wants, so some maneuvering is required.The
command strings in this section assume that the
SCCS commandsccs is in the command search
PATH, but you may like to hard-wire the path, or
set PATH at the start of each command. (It is also
possible that you need to say “delta” instead of
“sccs delta”. if this is the case, this command
needs to be in the path.)You should also note
that the strings are always handed to the Bourne
shell to be executed, and are set to exit with an
error immediately a sub-command fails.

One further assumption is that theae-sccs-put(1)
command, which is distributed with Aegis, is in
the command search path.This insulates some of
the weirdness that SCCS carries on with, and
makes the commands below comprehensible.

4.4.1. history_create_command

This command is used to create a new project his-
tory. The command is always executed as the
project owner.

The following substitutions are available:

${Input}
absolute path of the source file

${History}
absolute path of the history file

The entry in theaegis.conffi le looks like this:

history_create_command =
"ae-sccs-put -y$version -G$input "
" $ {d $h}/s.${b $h}";

It is important that thehistory_create_command
and thehistory_put_commandbe the same.This
is necessary for branching to work correctly.

4.4.2. history_get_command

This command is used to get a specific edit back
from history. The command may be executed by
developers.

The following substitutions are available:

${History}
absolute path of the history file

${Edit}
edit number, as giv en by history_query_-
command

${Output}
absolute path of the destination file

The entry in theaegis.conffi le looks like this:

history_get_command =
"get -r’$e’ -s -p -k "
" $ {d $h}/s.${b $h} > $o";

4.4.3. history_put_command

This command is used to add a new "top-most"
entry to the history file. Thiscommand is always
executed as the project owner.

The following substitutions are available:

${Input}
absolute path of source file

${History}
absolute path of history file

The entry in theaegis.conffi le looks like this:

history_put_command =
"ae-sccs-put -y$version -G$input "
" $ {d $h}/s.${b $h}";

Note that the SCCS file is left in thenot-editstate,
and that the source file is left in the baseline.

It is important that thehistory_create_command
and thehistory_put_commandbe the same.This
is necessary for branching to work correctly.

4.4.4. history_query_command

This command is used to query what the history
mechanism calls the top-most edit of a history
fi le. The result may be any arbitrary string, it
need not be anything like a number, just so long
as it uniquely identifies the edit for use by thehis-
tory_get_commandat a later date. The edit num-
ber is to be printed on the standard output.This
command may be executed by developers.

The following substitutions are available:

${History}
absolute path of the history file

The entry in theaegis.conffi le looks like this:

history_query_command =
"get -t -g ${d $h}/s.${b $h}";

Note that "get" reports the edit number on stdout.

4.4.5. Templates

The lib/config.example/sccsfi le in the Aegis dis-
tribution contains all of the above commands
(installed as /usr/local/share/aegis/example.con-
fig/sccsby default) so that you may readily insert
them into your project configuration file (called
aegis.confby default, seeaepconf(5) for how to
call it something else).

Peter Miller (bl/lib/en/user-guide/c3.1.so) Page 59

User Guide Aegis

Also, there are some subtleties to writing the
commands, which are not present in the above
examples. Inparticular, being able to support file
names which contain characters which are special
to the shell requires the use of the ${quote} sub-
stitution around all of the files names in the com-
mands.

In addition, it is possible to have a much more
useful description for the−y option. For exam-
ple: “-y${quote ($version) ${change
description}} ” i nserts the version number
and the brief description into the file’s log. This
means that using thesccs prs(1) command will
provide quite useful summaries.

4.4.6. BinaryFiles

SCCS is unable to cope with binary files. How-
ev er, Aegis will transparently encode all such
fi les, if you leave the history_content_limitation
field unset.

Page 60 (bl/lib/en/user-guide/c3.2.so) Peter Miller

Aegis UserGuide

4.5. UsingRCS

The entries for the commands are listed below.
RCS uses a slightly different model than aegis
wants, so some maneuvering is required.The
command strings in this section assume that the
RCS commandsci andco andrcs andrlog are in
the command search PATH, but you may like to
hard-wire the paths, or set PATH at the start of
each. You should also note that the strings are
always handed to the Bourne shell to be executed,
and are set to exit with an error immediately a
sub-command fails.

In these commands, the RCS file is kept
unlocked, since only the owner will be checking
changes in. The RCS functionality for coordinat-
ing shared access is not required.

One advantage of using RCS version 5.6 or later
is that binary files are supported, should you want
to have binary files in the baseline.

4.5.1. history_create_command

This command is used to create a new file history.
This command is always executed as the project
owner.

The following substitutions are available:

${Input}
absolute path of the source file

${History}
absolute path of the history file

The entry in theaegis.conffi le looks like this:

history_create_command =
"ci -u -d -M -m$c -t/dev/null \
$i $h,v; rcs -U $h,v";

The "ci -u " option is used to specify that an
unlocked copy will remain in the baseline.The
"ci -d " option is used to specify that the file
time rather than the current time is to be used for
the new revision. The"ci -M " option is used to
specify that the mode date on the original file is
not to be altered. The "ci -t " option is used to
specify that there is to be no description text for
the new RCS file. The"ci -m " option is used to
specify that the change number is to be stored in
the file log if this is actually an update (typically
from aenfafteraermon the same file name).The
"rcs -U " option is used to specify that the new
RCS file is to have unstrict locking.

It is essential that thehistory_create_command
and thehistory_put_commandare identical. It is
a historical accident that there are two separate
commands: before Aegis supported branches, this

was not a requirement.

4.5.2. history_get_command

This command is used to get a specific edit back
from history. This command is always executed
as the project owner.

The following substitutions are available:

${History}
absolute path of the history file

${Edit}
edit number, as giv en by history_query_-
command

${Output}
absolute path of the destination file

The entry in theaegis.conffi le looks like this:

history_get_command =
"co -r’$e’ -p $h,v > $o";

The "co -r option is used to specify the edit to
be retrieved. The"co -p option is used to spec-
ify that the results be printed on the standard out-
put; this is because the destination filename will
never look anything like the history source file-
name.

4.5.3. history_put_command

This command is used to add a new "top-most"
entry to the history file. Thiscommand is always
executed as the project owner.

The following substitutions are available:

${Input}
absolute path of source file

${History}
absolute path of history file

The entry in theaegis.conffi le looks like this:

history_put_command =
"ci -u -d -M -m$c -t/dev/null \
$i $h,v; rcs -U $h,v";

Uses ci to deposit a new revision, using -d and -M
as described for history_create_command.The
-m flag stores the change number in the file log,
which allows rlog(1) to be used to find the Aegis
change numbers to which each revision of the file
corresponds.

The "ci -u " option is used to specify that an
unlocked copy will remain in the baseline.The
"ci -d " option is used to specify that the file
time rather than the current time is to be used for
the new revision. The"ci -M " option is used to
specify that the mode date on the original file is

Peter Miller (bl/lib/en/user-guide/c3.2.so) Page 61

User Guide Aegis

not to be altered. The "ci -m " option is used to
specify that the change number is to be stored in
the file log, which allows rlog to be used to find
the change numbers to which each revision of the
fi le corresponds. You might want to use
-m$p,$c instead which stores both the project
name and the change number. Or -m$version ,
which will be composed of the branch and the
delta. Thesemake it much easier to track changes
across branches.

It is essential that thehistory_create_command
and thehistory_put_commandare identical. It is
a historical accident that there are two separate
commands: before Aegis supported branches, this
was not a requirement.

4.5.4. history_query_command

This command is used to query what the history
mechanism calls the top-most edit of a history
fi le. The result may be any arbitrary string, it
need not be anything like anumber, just so long
as it uniquely identifies the edit for use by thehis-
tory_get_commandat a later date.The edit num-
ber is to be printed on the standard output.This
command is always executed as the project owner.

The following substitutions are available:

${History}
absolute path of the history file

The entry in theaegis.conffi le looks like this:

history_query_command =
"rlog -r $h,v | "
"awk ’/ˆrevision/ {print $$2}’";

4.5.5. merge_command

RCS also provides amerge program, which can
be used to provide a three-way merge.

All of the command substitutions described in
aesub(5) are available. In addition, the following
substitutions are also available:

${ORiginal}
The absolute path name of a file containing
the version originally copied. Usually in a
temporary file.

${Most_Recent}
The absolute path name of a file containing
the most recent version. Usuallyin the
baseline.

${Input}
The absolute path name of the edited ver-
sion of the file. Usuallyin the development
directory. Aegis usually moves the original

source file aside, so that the output may
have the source file’s name.

${Output}
The absolute path name of the file in which
to write the difference listing.Usually in
the development directory, usually the
name of a change source file.

The entry in theaegis.conffi le looks like this:

merge_command =
"set +e; "
"merge -p -L baseline -L C$c "
" $ mr $orig $in > $out; "
"test $? -le 1";

The "merge -L " options are used to specify
labels for the baseline and the development direc-
tory, respectively, when conflict lines are inserted
into the result. The "merge -p " options is used
to specify that the results are to be printed on the
standard output.

It is important that this command does not move
its input and output files around, otherwise this
contradicts the warnings Aegis may issue to the
user. (In previous versions of Aegis, this was nec-
essary, howev er this is no longer the case.)

Warning: The version of diff3(1) available to
RCS merge(1) has a huge impact on its perfor-
mance and utility. You need to grab and install
GNU diff to get the best results.Unfortunately
the diff tool used by RCSmerge(1) is determined
at compile time. This means that you need to
build and install GNU diff packagebefore you
build and install GNU RCS package.

4.5.6. Referential Integrity

Many history tools (including RCS) can modify
the contents of the file when it is committed.
While there are usually options to turn this off,
they are seldom used.The problem is: if the com-
mit changes the file, the source in the repository
now no longer matches the object file in the
repository -i.e. the history tool has compromised
the referential integrity of the repository.

history_put_trashes_file = warn;

If you use RCS keyword substitution, you will
need this line. (The default is to report a fatal
error.)

Another reason for this option is that it tells Aegis
it needs to recalculate the file’s fingerprint after a
checkin.

Page 62 (bl/lib/en/user-guide/c3.2.so) Peter Miller

Aegis UserGuide

4.5.7. Templates

The lib/config.example/rcsfi le in the Aegis distri-
bution (installed as /usr/local/share/aegis/con-
fig.example/rcs by default) contains all of the
above commands, so that you may readily insert
them into your project configuration file.

Also, there are some subtleties to writing the
commands, which are not present in the above
examples. Inparticular, being able to support file
names which contain characters which are special
to the shell requires the use of the ${quote} sub-
stitution around all of the files names in the com-
mands.

In addition, it is possible to have a much more
useful description for the−m option. For exam-
ple: “-m${quote ($version) ${change
description}} ” i nserts the version number
and the brief description into the file’s log. This
means that using therlog(1) command will pro-
vide quite useful summaries.

4.5.8. BinaryFiles

RCS (version 5.6 and later) is able to cope with
binary files. It does so by saving a whole copy of
the file at each check-in.

If you want Aegis to transparently encode all such
fi les, simply leave the history_content_limitation
field unset.

If you want to check-in binary files, add the−kb
option to each of thercs -U commands in the
fields above, and also set

history_content_limitation =
binary_capable;

so that Aegis knows that no encoding is desired.

4.5.9. history_put_trashes_files

If you use RCS keywords, such as $id $ or
$log $, this will result in the file in the baseline
being changed by RCS at integrate pass.This is
after the build. Theresult is that the source files
no longer match the object files. Oops.

While such mechanism are essential when using
only a simple history tool, far more information
may be obtained using the file history report (aer
file_history filename), rendering such crude
methods unnecessary.

In addition to expected expansions in file header
comments, this can also be very destructive if, for
example, such a string appeared in a uuencoded
or MIME base 64 encoded file.

If you wish to prevent RCS from performing
keyword expansion, used thercs -kb option.

If, however, you wish to keep using keyword
expansion, set

history_tool_trashes_file = warning;

to cause Aegis to warn you, rather than fail.

Peter Miller (bl/lib/en/user-guide/c3.3.so) Page 63

User Guide Aegis

4.6. Usingfhist

The fhist program was written by David I. Bell
and is admirably suited to providing a history
mechanism with out the "cruft" that SCCS and
RCS impose.

Please note that the[# edit #] feature needs
to be avoided, or the-Forced_Update(-fu) flag
needs to be used in addition to the-Condi-
tional_Update(-cu) flag, otherwise updates will
complain that “Input file "XXX" contains editA
instead ofB for module "YYY"”

The history_create_commandand the his-
tory_put_commandare intentionally identical.
This minimizes problems when using branches.

4.6.1. history_create_command

This command is used to create a new project his-
tory. The command is always executed as the
project owner.

The following substitutions are available:

${Input}
absolute path of the source file

${History}
absolute path of the history file

The entry in theaegis.conffi le looks like this:

history_create_command =
"fhist ${b $h} -create -cu "
"-i $i -p ${d $h} -r";

Note that the source file is left in the baseline.

4.6.2. history_get_command

This command is used to get a specific edit back
from history. The command may be executed by
developers.

The following substitutions are available:

${History}
absolute path of the history file

${Edit}
edit number, as giv en by history_query_-
command

${Output}
absolute path of the destination file

The entry in theaegis.conffi le looks like this:

history_get_command =
"fhist ${b $h} -e ’$e’ -o $o "
"-p ${d $h}";

Note that the destination filename willneverlook
anything like the history source filename, so the
-p is essential.

4.6.3. history_put_command

This command is used to add a new "top-most"
entry to the history file. Thiscommand is always
executed as the project owner.

The following substitutions are available:

${Input}
absolute path of source file

${History}
absolute path of history file

The entry in theaegis.conffi le looks like this:

history_put_command =
"fhist ${b $h} -create -cu "
"-i $i -p ${d $h} -r";

Note that the source file is left in the baseline.

4.6.4. history_query_command

This command is used to query what the history
mechanism calls the "top-most" edit of a history
fi le. The result may be any arbitrary string, it
need not be anything like a number, just so long
as it uniquely identifies the edit for use by thehis-
tory_get_commandat a later date. The edit num-
ber is to be printed on the standard output.This
command may be executed by developers.

The following substitutions are available:

${History}
absolute path of the history file

The entry in theaegis.conffi le looks like this:

history_query_command =
"fhist ${b $h} -l 0 "
"-p ${d $h} -q";

4.6.5. Templates

The lib/config.example/fhistfi le in the Aegis dis-
tribution (installed as/usr/local/share/aegis/con-
fig.example/fhistby default) contains all of the
above commands, so that you may readily insert
them into your project configuration file.

4.6.6. Capabilities

By default, FHist is unable to cope will NUL
characters in its input files, however this is the
only limitation. By default, Aegis expects that
history tools are only able to cope with printable
ASCII text. To tell it ontherwise, set

history_content_limitation =
international_text;

in the projectaegis.conffi le.

Page 64 (bl/lib/en/user-guide/c3.3.so) Peter Miller

Aegis UserGuide

Aegis will transparently encode binary files (files
which contain NUL characters) on entry and exit
from the history tool. This means that you may
have binary files in your project without configur-
ing anything special.

4.6.7. BinaryFiles

FHist (version 1.7 and later) has support for
binary files. The fhist −binary option may be
used to specify that the file is binary, that it may
contain NUL characters. It is essential that you
have consistent presence or absence of the
−binary option for each file when combined with
the −CReate, −Update, −Conditional_Update and
−Extract options.Failure to do so will produce
inconsistent results.

This means that you have to always use the
−binary option in thehistory_create_command
and history_put_commandfields. You have to
decide right at the very beginning if your project
history will ever hav e binary files, or will never
have binary files. You can’t change your mind
later. If you choose to use the −binary option, set

history_content_limitation =
binary_capable;

However, Aegis would transparently encode all
such files, if you leave the history_content_-
limitation field set for international text. In some
cases, Aegis’ encoding will be more efficient than
fhist’s. Andyou have the advantage of being able
to change your mind later.

Peter Miller (bl/lib/en/user-guide/c3.4.so) Page 65

User Guide Aegis

4.7. DetectingHistory File Corruption

When you have files which exist for long periods
of time, particularly files such as the ones typi-
cally used by history tools, which are generally
appended to, without modification of the bulk of
the file, there is a very real possibility that a block
of the file could become corrupted over the
years.16 Unless you access the file versions con-
tained within that block, you have no way of
knowing whether or not the history file is OK.
(Arguably, the operating system should check for
this, but many do not, and in any case the error
may not be detectable at that level.)

Using Aegis, you can add a simple checksum to
your history files which will detect many cases of
corruption such as this, for all of the commonly
used history tools.Note: it cannot detect all cor-
ruptions (nothing can) but it will detect more than
many operating systems will.

You don’t need to use this technique with SCCS
or aesvt(1), they already have checksums in their
fi les.

4.7.1. GeneralMethod

In general, you need to do three things:

1. You need to create some kind of checksum of
your history file each time you modify it.
Something like md5sum(1) from the GNU
Fileutils would be good. Store the checksum
in a file next to the history file. Thiswould be
done in the history_create_commandand
history_put_commandfields of the project
aegis.conffi le.

2. Eachtime the file is read, you need to verify
the file’s checksum. Usethe same checksum
utility as before, and then compare it using,
say, cmp(1); it it fails (either an IO error, or
the checksum doesn’t compare equal) then
don’t proceed with the history file access.
You may need to repair or replace the disk.
You will need to restore from backup (yester-
day’s backup, see below). This would be
done at the beginning of thehistory_create_-
command, history_put_command, history_-
get_command and history_query_command
fields of the projectaegis.conffi le.

3. Becauseyou may not actually interact with
the file for years at a time, you need to check
the file fingerprints much more often.Daily

16 See also Saltzer, J.H. et al (1981)End-to-end
arguments in system design, http://web.mit.edu/-
Saltzer/www/publications/endtoend/endtoend.pdf

or at least weekly is suggested.You do this
with acron(1) job run nightly which compares
all of the history files with theirmd5sum(1)
checksums. Emailfailures to the system
administrator and the project administrators.
By doing this nightly, you not only avoid
backing-up corrupted files, you will always
know on which backup tape the good copy
resides - yesterday’s.

4.7.2. Configuration Commands

In order to implement this, you need to modify
some fields of your projectaegis.conffi le as fol-
lows:

history_create_command
You need to test if the history file and its
checksum file exist, and check the checksum
if this is the case. Then, use whichever his-
tory tool you choose (see the previous sec-
tions of this chapter).If it succeeds, run
md5sum(1) over the history file (not the
source file) and store the checksum in a file
next to the history tool’s file. Using the
same filename plus a.md5sum extension
makes thecron(1) job easier to write.

history_put_command
You need to test if the file exists (it may, for
example, be an old project to which you have
recently added this technique) and check the
checksum if this is the case. Then, use your
history tool as normal.If it succeeds, run
md5sum(1) over the history file (not the
source file) as in the create case.

history_get_command
You need to test if the file exists (it may, for
example, be an old project to which you have
recently added this technique) and check the
checksum if this is the case.Then use your
history tool as normal.

history_head_command
This command is only used ataeipassfi le,
immediately after one of thehistory_create_-
command or history_put_commandcom-
mands. Itis up to you whether you think
you need to add a guard as for thehistory_-
get_command field.

4.7.3. AnAlternati ve

Rather than runmd5sum(1) on the history files
each time you modify them, you could usegzip(1)
to obtain some minor compression, but it also
provides and Adler32 checksum of the file. For
fi les with long histories, this can be tedious to

Page 66 (bl/lib/en/user-guide/c3.4.so) Peter Miller

Aegis UserGuide

unpack every time you need to extract an old ver-
sion, but such operations are frequently I/O
bound, and so there may be no perceived slow-
ness by the user..

4.7.4. Aegis’Database

In addition to your history files, Aegis maintains a
database of file meta-data. In order to add a
checksum to the various file making up the
database, turn on thecompressed_database
project attribute. In addition to compressing the
database (a minor savings) it also adds an Adler32
checksum.

You can check this in thecron(1) job by using
gzcat(1) sent to/dev/null.

Peter Miller (bl/lib/en/user-guide/c4.0.so) Page 67

User Guide Aegis

5. TheDependency Maintenance Tool

Aegis can place heavy demands on the depen-
dency maintenance tool, so it is important that
you select an appropriate one. This chapter talks
about what features a dependency maintenance
tool requires, and gives examples of how to use
the various alternatives.

5.1. Required Features

The heart of any DMT is an inference engine.
This inference engine accepts agoal of what you
want it to construct and a set ofrules for how to
construct things, and attempts to construct what
you asked for given the rules you specified. This
is exactly a description of an expert system, and
the DMT needs to be an expert system for con-
structing files. Somethinglike PROLOG is prob-
ably ideal.

Aegis is capable of supporting a wide variety of
development directory styles. The different
development directory styles place different
demands on the dependency maintenance tool.
Development directory styles will be described in
the next section, but here is a quick summary:

copy of all sources:
This is what CVS does, and what many
other VC tool do. Because you have a
complete copy of all source files, the
dependency maintenance tool only needs to
be aware of one directory tree.

copy of everything:
This is a small optimization of the previous
case to cut down the time required for that
fi rst build,because the derived files from the
integration build can be reused.

link all sources
The is an optimization of the "copy all
sources" case, because linking a file is sig-
nificantly faster than making a copy of a
fi le. The dependency maintenance tool
only needs to be aware of one directory
tree.

link everything
This is an optimization of the previous case,
again reusing derived files from the integra-
tion build, except that you need to ensure
that your dependency maintenance tool is
configured to remove the derived file out-
puts of each rule before creating them, to
avoid corrupting the baseline or getting
"permission denied" error.

view path
This is the most efficient development
directory style, and it scales much better
than any of the above, but the dependency
maintenance tool must be able to cope with
a hierarchy of parallel source directory
trees. Thesetrees for a "view path", a list
of directories that programs search below to
find the files of interest. The vpath
statements of GNU Make are
almost, but not quite, capa-
ble of being used in this
way.

5.1.1. View Paths

For the union of all files in a project and all files
in a change (remembering that a change only
copies those files it is modifying, plus it may add
or remove files) for all files you must be able to
say to the dependency maintenance tool,

"If and only if the file is up-to-date in
the baseline, use the baseline copy of
the file, otherwise construct the file in
the development directory".

The presence of a source file in the change makes
the copy in the baseline out-of-date.

Most DMTs with this capability implement it by
using some sort of search path, allowing a hierar-
chy of directories to be scanned with little or no
modification to the rules.

If your DMT of choice does not provide this func-
tionality, the development_directory_style.-
source_file_symlinkfield of the project configura-
tion file may be set totrue, which tells Aegis to
maintain symbolic links in the development direc-
tory for all source files in the baseline which are
not present in the development directory. (See
aepconf(5) and aeb(1) for more information.)
This incurs a certain amount of overhead when
Aegis maintains these links, but a similar amount
of work is done within DMTs which have search
path functionality.

5.1.2. DynamicInclude File Dependencies

Include file dependencies are very important,
because a change may alter an include file, and all
of the sources in the baseline which use that
include file must be recompiled.

Consider the example given earlier: the include
fi le describing the interface definition of a func-
tion is copied into a change and edited, and so is
the source file defining the function. It is

Page 68 (bl/lib/en/user-guide/c4.1.so) Peter Miller

Aegis UserGuide

essential that all source files in the baseline which
include that file are recompiled, which will usu-
ally result in suitable diagnostic errors if any of
the clients of the altered function have yet to be
included in the change.

There are two ways of handling include file
dependencies:

• They can be kept in a file, and the file can be
maintained by suitable programs (maintaining it
manually never works, that’s just human nature).

• They can be determined by the DMT when it is
scanning the rules to determine what needs updat-
ing.

5.1.2.1. StaticFile

Keeping include dependencies in a file has a num-
ber of advantages:

• Most existing DMTs have the ability to include
other rules files, so that when performing a devel-
opment build from a baseline rules file, it could
include a dependencies file in the development
directory.

• Reading a file is much faster than scanning all of
the source files.

Keeping include dependencies in a file has a num-
ber of disadvantages:

• The file is independent of the DMT, it is either
generated before the DMT is invoked, in which
case it may do more work than is necessary, or it
may be invoked after the DMT (or after the DMT
has scanned its rules), in which case it may well
be out-of-date when the DMT needs it.

For example, the use ofgcc -M produces "dot d"
fi les, which may be merged to construct such an
includable dependency file. This happens after
the DMT has read and applied the rules, but pos-
sibly before the DMT has finished executing.17

• Many tools which can generate this information,
such as thegcc -Moption, are triggered by source
fi les, and are unable to manage a case where it is
an include file which is changing, to include a dif-
ferent set of other include files. In this case, the
inaccurate dependencies file may contain refer-
ences to the old set of nested include files, some
of which may no longer exist, This causes the
DMT to incorrectly generate an error stating that
the old include file is missing, when it is actually

17 See theUsing Make section for how GNU
Make may be used.It effectively combines both
methods: keeping.d fi les and dynamically updating
them. Becauseit combines both methods, it has
some of the advantages and disadvantages of both.

no longer required.

If a DMT can only support this kind of include
fi le dependencies, it is not suitable for use with
Aegis.

5.1.2.2. Dynamic

In order for a DMT to be suitable for use with
Aegis, it is essential that rules for the DMT may
be specified in such a way that include file depen-
dencies are determined "on the fly" when the
DMT is determining if a given rule is applicable,
and before the rule is applied.

This method suffers from the problem being
rather slow; but this is amenable to some caching
and the losses of performance are not as bad as
could be imagined.

This method has the advantage of correctness in
all cases, where a static file may at times be out-
of-date.

5.2. Development Directory Style

The project configuration file, usually called
aegis.conf, contains a field calleddevelopment_-
directory_stylewhich controls how the project
sources are presented to the DMT.

Seeaepconf(5) for a complete description of this
field.

There is a correspondingintegration_directory_-
stylefield, which defaults to the same value as the
development_directory_style. It is usually a very
bad idea if these two are different.

5.2.1. View Path

By not settingdevelopment_directory_styleat all
the only source files present in the development
directory are source files being create and/or
modified.

By using information provided by the
$search_path substitution, the build can access
the unchanged source files in the branch baseline
and deeper branch baselines.The great thing
about this approach is that there are also "precom-
piled" object files on the viewpath, so if an object
fi le does not need to be compiled (there are no
soure files in the development directory that have
anything to do with it) then the build can simply
link the unchanged object files in the baseline
without recompiling.

This build method scales the best, and is the
Aegis default.

Peter Miller (bl/lib/en/user-guide/c4.6.so) Page 69

User Guide Aegis

The difficulties of finding a DMT which is capa-
ble of coping with a view path means that this is
not the only work area style. All other methods
scale less well than a view path; some scalemuch
less well.

5.2.2. Link the Baseline

The first two sub-fields of interest in the
development_directory_styleare source_file_link
andsource_file_symlink.

source_file_link = true; This field is true if hard
links are to be used for project source files
(which are not part of the change) so that
the work area has a complete set of source
fi les.

source_file_symlink = true;This field is true if
symbolic links are to be used for project
source files (which are not part of the
change) so that the work area has a com-
plete set of source files.

By using these settings, all source files are present
in the development directory. They will be read-
only. As you decide to modify files in the change
set, theaecpcommand will remove the link and
replace it with a read-write copy of the file.

You need both these sub-fields set, because hard
links are not allowed to cross file system bound-
aries. Aegis will use hard links in preference to
soft links when it can.

Maintaining the hard links can be time consuming
for large projects, and add quite a noticeable
delay before builds start doing anything. Butsee
the −assume-symbolic-linksoption of theaeb(1)
command; use it sparingly.

The biggest penalty with this method is that the
initial build for a change set for a large project
can bevery time consuming.Recall that the base-
line has a complete "prebuild" already available.
To take advantage of these pre-built derived files,
there are a few more sub-fields:

derived_file_copy = true; This field is true if
copies are to be used for non-source files
which are present in the project baseline but
which are not present in the work area, so
that the work area has a complete set of
derived files.

derived_at_start_only = true;This settign causes
the above fields controling the appearance
of derived files to be acted upon only when
the development directory is created (at
aedb(1) time).

Copying files can be very time consuming and
also eats a lot of disk space. If you are prepared
to change your build slightly, it is possible to use
the following fields:

derived_file_link = true; This field is true if hard
links are to be used for non-source files
which are present in the project baseline but
which are not present in the work area, so
that the work area has a complete set of
derived files.

derived_file_symlink = true;This field is true if
symbolic links are to be used for non-
source files which are present in the project
baseline but which are not present in the
work area, so that the work area has a com-
plete set of derived files.

Just as for source files, hard links will be used in
preference to symbolic links if possible.

Note thatevery rule in your Makefile (or whatever
your DMT uses)must remove its outputs before
doing enything else, to break the links to the files
in the baseline, otherwise you will corrupt the
baseline. Aegis tries very hard to ensure that the
baseline files (and thus the links) are read-only, so
that you get an error from the build if you forget
to break a link.

This development directory style is called "arch
style" after Tom Lord’s arch (tla) which does
something very similar.

If you are placing an existing project under Aegis,
do the above three things one step at a time.First
get the source files available and integrate that.In
a second change set get derived file copies work-
ing. In a third change set (if you do it at all)
change the build and use derived file links.

5.2.3. CopyAll Sources

The sub-fields of interest in thedevelopment_-
directory_styleis source_file_copy.

source_file_copy = true; This field says copies
are to be used for project source files
(which are not part of the change) so that
the work area has a complete set of source
fi les. Filemodification time attributes will
be preserved.

By using this setting, all source files are present in
the development directory. They will be read-
only. As you decide to modify files in the change
set, theaecpcommand will remove the file and
replace it with a read-write copy of the file.

Page 70 (bl/lib/en/user-guide/c4.6.so) Peter Miller

Aegis UserGuide

Maintaining the copies can be time consuming for
large projects, and add quite a noticeable delay
before builds start doing anything. But see the
−assume-symbolic-linksoption of the aeb(1)
command; use it sparingly (yes, it applies to
copies as well).

The biggest penalty with this method is that the
initial build for a change set for a large project
can bevery time consuming. Recall that the base-
line has a complete "prebuild" already available.
To take advantage of these pre-built derived files,
there are a few more sub-fields:

derived_file_copy = true;This says copies are to
be used for non-source files which are
present in the project baseline but which are
not present in the work area, so that the
work area has a complete set of derived
fi les.

derived_at_start_only = true;This setting causes
the above fields controlling the appearance
of derived files to be acted upon only when
the development directory is created (at
aedb(1) time).

This development directory style is called "CVS
style" after GNU CVS which does something
very similar.

5.2.4. ObsoleteFeatures

There are several fields in the aegis.conf fi le
which are obsolete.Aegis will automatically
transfer these to create adevelopment_directory_-
styleif you haven’t specified one.

create_symlinks_before_build:This is like setting
both development_directory_style.source_-
file_symlink and development_directory_-
style.derived_file_symlinkat the same time.

remove_symlinks_after_build:This is like setting
the development_directory_style.during_build_-
only field.

create_symlinks_before_integration_build:This is
like setting both integration_directory_-
style.source_file_symlinkand integration_-
directory_style.derived_file_symlinkat the
same time.

remove_symlinks_after_integration_build:This is
like setting the integration_directory_-
style.during_build_onlyfield.

Aegis will print a warning if you use any of these
fields.

Peter Miller (bl/lib/en/user-guide/c4.2.so) Page 71

User Guide Aegis

5.3. UsingCook

The Cookprogram is the only dependency main-
tenance tool, known to the author, which is suf-
ficiently capable to supply Aegis’ needs.18 Tools
such ascakeandGNU Make are described later.
They need a special tweak to make them work.

This section describes appropriate contents for the
Howto.cookfi le, input to thecook(1) program. It
also discusses thebuild_commandandintegrate_-
build_commandand link_baselineand change_-
file_command and project_file_commandand
link_integration_directoryfields of the configura-
tion file. Seeaepconf(5) for more information
about this file.

5.3.1. Invoking Cook

Thebuild_commandfield of the configuration file
is used to invoke the relevant build command.In
this case, it is set as follows

build_command =
"cook -b ${s Howto.cook} -nl\

project=$p change=$c version=$v";

This command tells Cook where to find the
recipes. The${s Howto.cook} expands to a
path into the baseline during development if the
fi le is not in the change. Look inaesub(5) for
more information about command substitutions.

The recipes which follow will all remove their tar-
gets before constructing them, which qualifies
them for the next entry in the configuration file:

link_integration_directory = true;

The links must be removed first, otherwise the
baseline would cease to be self-consistent.

5.3.2. TheRecipe File

The file containing the recipes is called
Howto.cookand is given to Cook on the com-
mand line.

The following items are preamble to the rest of
the file; they ask Aegis for the source files of the
project and change so that Cook can determine
what needs to be compiled and linked.

18 The version in use when writing this section
was 1.5. All versions from 1.3 onwards are known
to work with the recipes described here.

project_files =
[collect_lines aelpf

-p [project] -c [change]];
change_files =

[collect_lines aelcf
-p [project] -c [change]];

source_files =
[stringset [project_files]

[change_files]];

This example continues the one from chapter 3,
and thus has a single executable to be linked from
all the object files

object_files =
[fromto %.y %.o [match_mask %.y

[source_files]]]
[fromto %.l %.o [match_mask %.l

[source_files]]]
[fromto %.c %.o [match_mask %.c

[source_files]]]
;

It is necessary to determine if this is a develop-
ment build, and thus has the baseline for addi-
tional ingredients searches, or an integration
build, which does not.The version supplied by
Aegis will tell us this information, because it will
be major.minor.Cchange for development builds
andmajor.minor.Ddeltafor integration builds.

if [match_mask %1C%2 [version]] then
{

baseline = [collect aegis -cd -bl
-p [project]];

search_list = . [baseline];
}

The search_list variable in Cook is the list of
directories to search for dependencies; it defaults
to only the current directory. The resolvebuiltin
function of Cook may be used to ask Cook for the
name of the file actually used to resolve depen-
dencies, so that recipe bodies may reference the
appropriate file:

example: [object_files]
{

[cc] -o example
[resolve [object_files]]
-ly -ll;

}

This recipe says that to Cook the example pro-
gram, you need the object files determined earlier,
and them link them together. Object files which
were up to date in the baseline are used wherever
possible, but files which were out of date are con-
structed in the current directory and those will be
linked.

Page 72 (bl/lib/en/user-guide/c4.2.so) Peter Miller

Aegis UserGuide

5.3.3. TheRecipe for C

Next we need to tell Cook how to manage C
sources. Onthe surface, this is a simple recipe:

%.o: %.c
{

rm %.o;
[cc] [cc_flags] -c %.c;

}

Unfortunately it has forgotten about finding the
include file dependencies. The Cook package
includes a program calledc_incl which is used to
find them. The recipe now becomes

%.o: %.c: [collect c_incl -eia %.c]
{

rm %.o;
[cc] [cc_flags] -c %.c;

}

The file may not always be present to be removed
(causing a fatal error), and it is irritating to
execute a redundant command, so the remove is
mangled to look like this:

%.o: %.c: [collect c_incl -eia %.c]
{

if [exists %.o] then
rm %.o

set clearstat;
[cc] [cc_flags] -c %.c;

}

The "set clearstat" clause tells Cook that the com-
mand will invalidate parts of itsstatcache, and to
look at the command for what to invalidate.

Another thing this recipe needs is to use the base-
line for include files not in a change, and so the
recipe is altered again:

%.o: %.c: [collect c_incl -eia
[prepost "-I" "" [search_list]]

%.c]
{

if [exists %.o] then
rm %.o

set clearstat;
[cc] [cc_flags] [prepost "-I" ""

[search_list]] -c %.c;
}

See theCook Reference Manualfor a description
of the prepostbuiltin function, and other Cook
details.

There is one last change that must be made to this
recipe, it must use the resolve function to refer-
ence the appropriate file once Cook has found it
on the search list:

%.o: %.c: [collect c_incl -eia
[prepost "-I" "" [search_list]]

[resolve %.c]]
{

if [exists %.o] then
rm %.o

set clearstat;
[cc] [cc_flags] [prepost "-I" ""

[search_list]] -c [resolve %.c];
}

Only use this last recipe for C sources, the others
are only shown so that the derivation of the recipe
is clear; while it is very similar to the original, it
looks daunting at first.

5.3.3.1. CInclude Semantics

The semantics of C include directives make the

#include " filename"

directive dangerous in a project developed with
the Aegis program and Cook.

Depending on the age of your compiler, whether
it is AT&T traditional C or newer ANSI C, this
form of directive will search first in the current
directory and then along the search path, or in the
directory of the including file and then along the
search path.

The first case is fairly benign, except that compil-
ers are rapidly becoming ANSI C compliant, and
an operating system upgrade could result in a
nasty surprise.

The second case is bad news. If the source file is
in the baseline and the include file is in the
change, you don’t want the source file to use the
include file in the baseline.

Always use the

#include < filename>

form of the include directive, and set the include
search path explicitly on the command line used
by Cook.

Cook is able to dynamically adapt to include file
dependencies, because they are not static. The
presence of an include file in a change means that
any file which includes this include file, whether
that source file is in the baseline or in the change,
must have a dependency on the change’s include
fi le. Potentially, files in the baseline will need to
be recompiled, and the object file stored in the
change, not the baseline. Subsequent linking
needs to pick up the object file in the change, not
from the baseline.

Peter Miller (bl/lib/en/user-guide/c4.2.so) Page 73

User Guide Aegis

5.3.4. TheRecipe for Yacc

Having explained the complexities of the recipes
in the above section about C, the recipe for yacc
will be given without delay:

%.c %.h: %.y
{

if [exists %.c] then
rm %.c

set clearstat;
if [exists %.h] then

rm %.h
set clearstat;

[yacc] [yacc_flags] -d
[resolve %.y];

mv y.tab.c %.c;
mv y.tab.h %.h;

}

This recipecould be jazzed up to cope with the
listing file, too, if that was desired, but this is suf-
ficient to work with the example.

Cook’s ability to cope with transitive dependen-
cies will pick up the generated .c file and con-
struct the necessary .o file.

5.3.5. TheRecipe for Lex

The recipe for lex is vary similar to the recipe for
yacc.

%.c: %.l
{

if [exists %.c] then
rm %.c

set clearstat;
[lex] [lex_flags] -d [resolve %.l];
mv lex.yy.c %.c;

}

Cook’s ability to cope with transitive dependen-
cies will pick up the generated .c file and con-
struct the necessary .o file.

5.3.6. Recipesfor Documents

You can format documents, such as user guides
and manual entries with Aegis and Cook, and the
recipes are similar to the ones above.

%.ps: %.ms: [collect c_incl -r -eia
[prepost "-I" "" [search_list]]
[resolve %.ms]]

{
if [exists %.ps] then

rm %.ps
set clearstat;

roffpp [prepost "-I" ""
[search_list]] [resolve %.ms]
| g roff -p -t -ms
> [target];

}

This recipe says to run the document through
groff, with the pic(1) and tbl(1) filters, use the
ms(7) macro package, to produce PostScript out-
put. Theroffpp program comes with Cook, and is
like soelim(1) but it accepts include search path
options on the command line.

Manual entries may be handled in a similar way

%.cat: %.man: [collect c_incl -r -eia
[prepost "-I" "" [search_list]]
[resolve %.man]]

{
if [exists %.cat] then

rm %.cat
set clearstat;

roffpp [prepost "-I" ""
[search_list]] [resolve %.man]
| g roff -Tascii -t -man
> [target];

}

5.3.7. Templates

The lib/config.example/cookfi le in the Aegis dis-
tribution contains all of the above commands, so
that you may readily insert them into your project
configuration file.

Page 74 (bl/lib/en/user-guide/c4.3.so) Peter Miller

Aegis UserGuide

5.4. UsingCake

This section describes how to use cake as the
dependency maintenance tool.The cakepackage
was published in thecomp.sources.unixUSENET
newsgroup volume 12, around February 1988,
and is thus easily accessible from the many
archives around the internet.

It does not have a search path of any form,
not even something like VPATH. It does, how-
ev er, hav e facilities for dynamic include file
dependencies.

5.4.1. Invoking Cake

Thebuild_commandfield of the configuration file
is used to invoke the relevant build command.In
this case, it is set as follows

build_command =
"cake -f ${s Cakefile} \

-DPROJECT=$p -DCHANGE=$c \
-DVERSION=$v";

This command tellscakewhere to find the rules.
The${s Cakefile} expands to a path into the
baseline during development if the file is not in
the change. Look inaesub(5) for more informa-
tion about command substitutions.

The rules which follow will all remove their tar-
gets before constructing them, which qualifies
them for the next entry in the configuration file:

link_integration_directory = true;

The links must be removed first, otherwise the
baseline would be corrupted by integration builds.

Another field to be set in this file is

development_directory_style =
{

source_file_symlink = true;
};

which tells Aegis to maintain symbolic links
between the development directory and the base-
line. This also requires that rules remove their
targets before constructing them, to ensure that
rules do not attempt to write their results onto the
read-only versions in the baseline.

5.4.2. TheRules File

The file containing the rules is calledCakefileand
is given to cake on the command line.

The following items are preamble to the rest of
the file; they ask Aegis for the source files of the
project and change so that cake can determine
what needs to be compiled and linked.

#define project_files \
[[aelpf -p PROJECT \

-c CHANGE]];
#define change_files \

[[aelcf -p PROJECT \
-c CHANGE]];

#define source_files \
project_files change_files

#define CC gcc
#define CFLAGS -O

This example parallels the one from chapter 3,
and thus has a single executable to be linked from
all the object files

#define object_files \
[[sub -i X.c %.o source_files]] \
[[sub -i X.y %.o source_files]] \
[[sub -i X.l %.o source_files]]

Constructing the program is straightforward

example: object_files
rm -f example
CC -o example object_files

This rule says that to construct the example pro-
gram, you need the object files determined earlier,
and them link them together. Object files which
were up to date in the baseline are used wherever
possible, but files which were out of date are con-
structed in the current directory and those will be
linked.

5.4.3. TheRule for C

Next we need to tell cake how to manage C
sources. Onthe surface, this is a simple rule:

%.o: %.c
CC CFLAGS -c %.c

paralleling that found in most makes, however it
needs to delete the target first, and to avoid delet-
ing the.o fi le whenever cake thinks it is transitive.

%.o!: %.c
rm -f %.o
CC CFLAGS -c %.c

The -f option to therm command is because the
fi le does not always exist.

Unfortunately this rule omits finding the include
fi le dependencies. The cake package includes a
program calledccincl which is used to find them.
The rule now becomes

%.o!: %.c* [[ccincl %.c]]
rm -f %.o
CC CFLAGS -c %.c

This rule is a little quirky about include files
which do not yet exist, but must be constructed by

Peter Miller (bl/lib/en/user-guide/c4.3.so) Page 75

User Guide Aegis

some other rule.You may want to usegcc -MM
instead, which is almost as quirky when used with
cake. Another alternative, used by the author
with far more success, is to use thec_incl pro-
gram from thecookpackage, mentioned in an ear-
lier section. The gcc -MMunderstands C include
semantics perfectly, the c_incl command caches
its results and thus goes faster, so you will need to
figure which you most want.

5.4.3.1. IncludeDirectives

Unlike cookdescribed in an earlier section, using
cake as described here allows you to continue
using the

#include " filename"

form of the include directive. This is because the
development directory appears, to the compiler, to
be a complete copy of the baseline.

5.4.4. TheRule for Yacc

Having explained the complexities of the rules in
the above section about C, the rule for yacc will
be given without delay:

#define YACC yacc
#define YFLAGS

%.c! %.h!: %.y if exist %.y
rm -f %.c %.h y.tab.c y.tab.h
YACC YFLAGS -d %.y
mv y.tab.c %.c
mv y.tab.h %.h

This rule could be jazzed up to cope with the list-
ing file, too, if that was desired, but this is suf-
ficient to work with the example.

Cake’s ability to cope with transitive dependen-
cies will pick up the generated.c fi le and con-
struct the necessary.o fi le.

5.4.5. TheRule for Lex

The rule for lex is vary similar to the rule for
yacc.

#define LEX lex
#define LFLAGS

%.c!: %.l if exist %.l
rm -f %.c
LEX LFLAGS %.l
mv lex.yy.c %.c

Cake’s ability to cope with transitive dependen-
cies will pick up the generated.c fi le and con-
struct the necessary.o fi le.

5.4.6. Rulesfor Documents

You can format documents, such as user guides
and manual entries with Aegis and cake, and the
rules are similar to the ones above.

%.ps!: %.ms* [[soincl %.ms]]
rm -f %.ps
groff -s -p -t -ms %.ms > %.ps

This rule says to run the document through groff,
with the soelim(1) and pic(1) and tbl(1) filters,
use the ms(7) macro package, to produce
PostScript output.

This suffers from many of the problems with
include files which need to be generated, as does
the C rule, above. You may want to usec_incl -r
from thecookpackage, rather than thesoinclsup-
plied by thecakepackage.

Manual entries may be handled in a similar way

%.cat!: %.man* [[soincl %.man]]
rm -f %.cat
groff -Tascii -s -t -man %.man \

> %.cat

Page 76 (bl/lib/en/user-guide/c4.4.so) Peter Miller

Aegis UserGuide

5.5. UsingMake

The make(1) program exists in many forms, usu-
ally one is available with eachUNIX version. The
one used in the writing of this section isGNU
Make 3.70, available by anonymous FTP from
your nearest GNU archive site. GNU Make was
chosen because it was the most powerful, it is
widely available (usually for little or no cost) and
discussion of the alternatives (SunOS make, BSD
4.3 make, etc), would not be universally applica-
ble. "Plainvanilla" make (with no transitive clo-
sure, no pattern rules, no functions) is not suf-
ficiently capable to satisfy the demands placed on
it by Aegis.

With the introduction of thedevelopment_-
directory_stylefield of the project configuration
fi le, any project which is currently using a "plain
vanilla" make may continue to use it, and still
manage the project using Aegis.

As mentioned earlier in this chapter, makeis not
really sufficient, because it lacks dynamic include
dependencies. However, GNU Make has a form
of dynamic include dependencies, and it has a few
quirks, but mostly works well.

The other feature lacking inmakeis a search path.
While GNU Make has functionality called
VPATH, the implementation leaves something to
be desired, and can’t be used for the search path
functionality required by Aegis. Becauseof this,
the development_directory_style.source_file_-
symlinkfield of the project configuration file is set
to true so that Aegis will arrange for the develop-
ment directory to be full of symbolic links, mak-
ing it appear that the entire project source is in
each change’s dev elopment directory.

5.5.1. Invoking Make

The build_commandfield of the project configu-
ration file is used to invoke the relevant build
command. Inthis case, it is set as follows

build_command =
"gmake -f ${s Makefile} project=$p \

change=$c version=$v";

This command tells make where to find the rules.
The${s Makefile} expands to a path into the
baseline during development if the file is not in
the change. Look inaesub(5) for more informa-
tion about command substitutions.

The rules which follow will all remove their tar-
gets before constructing them, which qualifies
them for the next entry in the configuration file:

link_integration_directory = true;

The files must be removed first, otherwise the
baseline would be corrupted by integration builds
(or even by dev eloper builds, if your aren’t using
a separate user for the project owner).

Note: if you are migrating an existing projectdo
not set this field; only set it after you have
changedall of the Make rules. If in doubt,don’t
set this field.

Another field to be set in this file is

development_directory_style =
{

source_file_symlink = true;
};

which tells Aegis to maintain symbolic links
between the development directory and the base-
line for source files (but not derived files). See
aepconf(5) for more information.

5.5.2. TheRule File

The file containing the rules is calledMakefile
and is given to make on the command line.

The following items are preamble to the rest of
the file; they ask Aegis for the source files of the
project and change so that make can determine
what needs to be compiled and linked.

project_files := \
$(shell aelpf -p $(project) \

-c $(change))
change_files := \

$(shell aelcf -p $(project) \
-c $(change))

source_files := \
$(sort $(project_files) \

$(change_files))
CC := gcc
CFLAGS := -O

This example parallels the one from chapter 3,
and thus has a single executable to be linked from
all the object files

object_files := \
$(patsubst %.y,%.o,$(filter \

%.y,$(source_files))) \
$(patsubst %.l,%.o,$(filter \

%.l,$(source_files))) \
$(patsubst %.c,%.o,$(filter \

%.c,$(source_files)))

Constructing the program is straightforward,
remembering to remove the target first.

Peter Miller (bl/lib/en/user-guide/c4.4.so) Page 77

User Guide Aegis

example: $(object_files)
rm -f example
$(CC) -o example $(object_files) \

-ly -ll

This rule says that to make the example program,
you need the object files determined earlier, and
them link them together. Object files which were
up to date in the baseline are used wherever possi-
ble, but files which were out of date are con-
structed in the current directory and those will be
linked.

5.5.3. TheRule for C

Next we need to tell make how to manage C
sources. Onthe surface, this is a simple rule:

%.o: %.c
$(CC) $(CFLAGS) -c $*.c

This example matches the built-in rule for most
makes. But it forgets to remove the target before
constructing it.

%.o: %.c
rm -f $*.o
$(CC) $(CFLAGS) -c $*.c

The target may not yet exist, hence the-f option.

Something missing from this rule is finding the
include file dependencies. The GNU Make User
Guide describes a method for obtaining include
fi le dependencies.A set of dependency files are
constructed, one per.c fi le.

%.d: %.c
rm -f %.d
$(CC) $(CFLAGS) -MM $*.c \
| s ed ’s/ˆ\(.*\).o :/\1.o \1.d :/’ \
> $*.d

These dependency files are then included into the
Makefile to inform GNU Make of the dependen-
cies.

include $(patsubst \
%.o,%.d,$(object_files))

GNU Make has the property of making sure all its
include files are up-to-date. If any are not, they
are made, and then GNU Make starts over, and re-
reads the Makefile and the include files from
scratch, before proceeding with the operation
requested. Inthis case, it means that our depen-
dency construction rule will be applied before any
of the sources are constructed.

This method is occasionally quirky about absent
include files which you have yet to write, or
which are generated and don’t yet exist, but this is
usually easily corrected, though you do need to

watch out for things which will stall an integra-
tion.

The -MM option to the $(CC) command means
that this rule requires thegcc program in order to
work correctly. It may be possible to use
c_incl(1) from cook, orccincl(1) from cake to
build the dependency lists instead; but they don’t
understand the conditional preprocessing as well
asgccdoes.

This method also suffers when heterogeneous
development is performed.If you include differ-
ent files, depending on the environment being
compiled within, the.d fi les may be incorrect, and
GNU Make has no way of knowing this.

5.5.3.1. IncludeDirectives

Unlike cookdescribed in an earlier section, using
GNU Make as described here allows you to con-
tinue using the

#include " filename"

form of the include directive. This is because the
development directory appears, to the compiler, to
be a complete copy of the baseline.

5.5.4. TheRule for Yacc

Having explained the complexities of the rules in
the above section about C, the rule for yacc will
be given without delay:

%.c %.h: %.y
rm -f $*.c $*.h y.tab.c y.tab.h
$(YACC) $(YFLAGS) -d $*.y
mv y.tab.c $*.c
mv y.tab.h $*.h

This rulecould be jazzed up to cope with the list-
ing file, too, if that was desired, but this is suf-
ficient to work with the example.

GNU Make’s ability to cope with transitive clo-
sure will pick up the generated.c fi le and con-
struct the necessary.o fi le.

To prevent GNU Make throwing away the transi-
tive files, and thus slowing things down in some
cases, make them precious:

.PRECIOUS: \
$(patsubst %.y,%.c,$(filter \

%.y,$(source_files))) \
$(patsubst %.y,%.h,$(filter \

%.y,$(source_files)))

5.5.5. TheRule for Lex

The rule for lex is vary similar to the rule for
yacc.

Page 78 (bl/lib/en/user-guide/c4.4.so) Peter Miller

Aegis UserGuide

%.c: %.l
rm -f $*.c lex.yy.c
$(LEX) $(LFLAGS) $*.l
mv lex.yy.c $*.c

GNU Make’s ability to cope with transitive clo-
sure will pick up the generated.c fi le and con-
struct the necessary.o fi le.

To prevent GNU Make throwing away the transi-
tive files, and thus slowing things down in some
cases, make them precious:

.PRECIOUS: \
$(patsubst %.l,%.c,$(filter \

%.l,$(source_files)))

5.5.6. Rulesfor Documents

You can format documents, such as user guides
and manual entries with Aegis and GNU Make,
and the rules are similar to the ones above.

%.ps: %.ms
rm -f $*.ps
groff -p -t -ms $*.ms > $*.ps

This rule says to run the document through groff,
with the pic(1) and tbl(1) filters, use thems(7)
macro package, to produce PostScript output.

This omits include file dependencies. If this is
important to you, thec_incl program fromcook
can be used to find them. Filtering its output can
then produce the necessary dependency files to be
included, rather like the C rules, above.

Manual entries may be handled in a similar way

%.cat: %.man
rm $*.cat
groff -Tascii -s -t -man $*.man \

> $*.cat

5.5.7. OtherMakes

All of the above discussion assumes that GNU
Make and GCC are used. If you do not want to
do this, or may not do this because of internal
company politics, it is possible to perform all of
the automated features manually.

This may, howev er, rapidly become spectacularly
tedious. For example: if a user needs to copy the
Makefile into their change for any reason, they
will need to constantly useaed(1) to "catch up"
with integrations into the baseline.

Reviewers are also affected: they must check that
each change to theMakefileaccurately reflects the
object list and the dependencies of each source
fi le.

5.5.8. Templates

The lib/config.example/makefi le in the Aegis dis-
tribution contains all of the above commands, so
that you may readily insert them into your project
configuration file.

5.5.9. GNUMake VPATH Patch

Version 3.76 and later of GNU Make include this
patch, so you don’t need to read this section
unless you have GNU Make 3.75 or earlier.

There is a patch available for GNU Make 3.75
and earlier which gives it improved VPATH
semantics. Atthe time it was not maintained by
the same person who maintained GNU Make.
Since then, the maintaier changed, and the patch
has been incorporated.

The patch is the work of Paul D. Smith
<psmith@BayNetworks.com> and may be
fetched By Anonymous FTP from

Host: ftp.wellfleet.com
Dir: /netman/psmith/gmake
File: vpath+.README
File: vpath+.patch.version

The version numbers track the GNU Make ver-
sion numbers.

For a description of the VPATH problem, and
how this patch addresses it, see the README file
referenced.

5.5.10. GNUMake’s VPATH+

In theory, using GNU Make 3.76 or later (or a
suitable patched earlier version) is similar to
using Cook. The project configuration file now
requires

link_integration_directory = false;

which is the default. TheMakefilenow requires

VPATH . bl

Assuming thatbl is a symbolic link to the base-
line. The.d fi les continue to be used.

Peter Miller (bl/lib/en/user-guide/c4.5.so) Page 79

User Guide Aegis

5.6. Building Executable Scripts

Aegis treats source files as, well, source files.
This means that it forgets any executable bits (and
any other mode bits) you may set on the file.
Usually, this isn’t a problem - except for scripts.

So, just how do you get Aegis to give you an
executable script?Well, you add a build rule.
However, since it can’t depend on itself, it needs
to depend on something else.

Using a Cook example, we could write

bin/%: script/%.sh
{

/* copy the script */
cp script/%.sh bin/%;
/* make it executable */
chmod a+rx bin/%;
/* syntax check */
bash -n bin/%;

}

There is a small amout of value-added here: we
did a syntax check along the way, which catches
all sorts of problems.

The same technique also works for Perl

bin/%: script/%.pl
{

cp script/%.pl bin/%;
chmod a+rx bin/%;
perl -cw bin/%;

}

The same technique also works for TCL

bin/%: script/%.tcl
{

cp script/%.rcl bin/%;
chmod a+rx bin/%;
procheck -nologo bin/%;

}

The procheck(1) command is part of the TclPro
package.

Many tools have a similar options.

You can also combine this with GNU Autoconf to
produce architecture specific shell scripts from
architecture neutral sources.

5.7. GNUAutoconf

If your projects uses GNU Make, GNU Autoconf
and GNU Automake, here is a quick and simple
method to import your project into Aegis and
have it running fairly quickly.

5.7.1. TheSources

Once you have create and Aegis project to, your
fi rst change set should simply contain all of the

source files, without removing or adding any-
thing. Theonly additonal file is the Aegis project
configuration file, usually calledaegis.confand
usually located in the top-level directory.

Follow the directions in the section, above, on
using Makefor how to fill out this file.

Note that if you are working from a tarball, they
usually contain several derivedfi le. Thatis, files
which are not primary sourec files, but are instead
derived from other files. Thisis a convenience for
the end-user but a nuisance at this point.Exanple
of derived files in source tarballs includecon-
figure , Makefile.in , config.h.in , etc.
You will need to exclude them form the first
change set.

In this first change set, you don’t even try to build
anything.

build_command = "exit 0";

Which will allow the Aegis process to complete.

5.7.2. Building

You actually get your project to buld in the sec-
ond change set. Once you have started develop-
ment, you will see all of the source files in the
development directory (well, symlinks to them).

In order to get you build to work, you have to
bootstrap theMakefile . Using the usual GNU
tool chain, this file is generated fromMake-
file.in which is in turn generated from
Makefile.am , and this is not presently in the
development directory.

This is done by creating a new primary source file
calledmakefile at the top level

$ aenf makefile
$

and setting its contents to be

include Makefile

ifndef srcdir

bogus-default-target: Makefile
$(MAKE) $(MAKEFLAGS) $(MAKECMDGOALS)

Makefile: configure Makefile.in config.h.in
rm -f config.cache
./configure

configure: configure.ac
autoconf

config.h.in: configure.ac
autoheader

Page 80 (bl/lib/en/user-guide/c4.7.so) Peter Miller

Aegis UserGuide

Makefile.in: Makefile.am
automake

endif

This works becausemake(1) looks for make-
file before Makefile , but also because our
bootstrapping makefile includes the real
Makefile if it exists, and the real file’s rules
will take precedence. Atthis point, GNU Make
has a very useful feature: it will rebuild include
fi les which are out-of-date before it does anything
else. Inoue new dev elopment directory, this will
result in the necessary files being automagically
generated and then acted upon.

Things that can go wrong: many projects include
fi les such asinstall-sh and missing and mkin-
stalldirs in the directibution. You will need to
include rules for these files in the conditonal part
of your bootstrappingmakefile rules.

AUTOMAKE_DIR=/usr/share/automake-1.7

install-sh: $(AUTOMAKE_DIR)/install-sh
cp $ˆ $@

missing: $(AUTOMAKE_DIR)/missing
cp $ˆ $@

mkinstalldirs: $(AUTOMAKE_DIR)/mkinstalldirs
cp $ˆ $@

You will have to tell the configure rule that it
depends on these files as well.

Other things that can go wrong: some projects use
different rules for constructing theconfig.h
fi le. You should read the generatedMake-
file.in fi le for how, and duplicate into the
bootstrappingmakefile fi le. You may also
need a rule for theaclocal.m4 fi le, and tell the
configurerule it depends on it.

There is a templatemakefile installed in the
/usr/local/share/aegis/config.exampledirectory.

Now you can set the build command field of the
project configuration file:

build_command =
"make "
"project=$project "
"change=$change "
"version=$version";

Aegis watches the eist status of the build com-
mand. Beaw are that many build systems which
use recursive make report false positives, because
the exist status of the sub-make is often ignored
by the top-level Makefile. This means that Aegis
may think your project compiles when, in fact, it
does not.

If, while trying to get it to build, you discover
more derived files which should not be primary
source files, simply use theaerm(1) command.
The aeclean(1) command may come in handly,
too.

Once this second change set builds, integrate it
via the usual Aegis process.

5.7.3. Tesing

If the project you are importing has tests, they are
probably executed by saying

$ make check
lots of output
$

or something similar. Aegis expects each test to
be in a separate shell script. Usually this is sim-
ple enough to arrange. See the chapter onTesting
for some hints.

5.7.4. AnOptimization

The first build in a new dev elopment directory
can be quite time consuming.It is possible to
short-ciruit this by using the pre-built object files
in the baseline.To do this, use the following set-
ting in the project configuration file:

development_directory_style =
{

source_file_symlink = true;
derived_file_copy = true;
derived_at_start_only = true;

};

This causes Aegis to copy all of the derived file
into your development directory ataedb time.
This is usually much faster than compiling and
linking all over again.

5.7.5. Signed-off-by

It is possible to get the Aegis process to automati-
cally append Signed-off-by lines to the
change description. Set the following field in the
project configuration file:

signed_off_by = true;

Only open source projects should use this field.
The OSDL definition of the Developer’s Certifi-
cate of Origin 1.0 can be found at http://-
www.osdl.org/newsroom/press_releases/2004/-
2004_05_24_dco.html and is defined to mean:

"By making a contribution to this project, I certify
that:

(a) The contribution was created in whole or in
part by me and I have the right to submit it under

Peter Miller (bl/lib/en/user-guide/c4.7.so) Page 81

User Guide Aegis

the open source license indicated in the file; or

(b) The contribution is based upon previous work
that, to the best of my knowledge, is covered
under an appropriate open source license and I
have the right under that license to submit that
work with modifications, whether created in
whole or in part by me, under the same open
source license (unless I am permitted to submit
under a different license), as indicated in the file;
or

(c) The contribution was provided directly to me
by some other person who certified (a), (b) or (c)
and I have not modified it."

5.7.6. Importing the Next Upstream Tarball

If you are using Aegis to track your local changes,
but the master sourecs are elsewhere, you will
need to track upstream changes when they are
released.

It is tempting to use theaetar(1) command, but it
will not be able to detect derived files which have
been added to the tarball.You will need to
uppack the tarball and remove them manually.

Create a change set in the usual way, and aecd(1)
into it. Copy the entire project into your change
set, because you don’t yet know what the tarball
will want to change (and it will include
unchanged files).

$ aecd
$ aecp .
$

(Yes, that dot is part of the command.)Now you
can unpack the tarball.You need to strip off the
leading directory somehow (most polite projects
use a prefix). The author uses thetardy(1) com-
mand, like this:

$ zcat project-x.y.tar.gz | \
tardy -rp project-x.y -now | \
tar xf -

$

It pays to change that the tarball is the shape you
expectbeforerunning this command.

At this point you have to once again remove all of
the files which are in the tarball, but which are not
primary source files, such asconfigureandMake-
file.in and the like.

$ rm -f configure Makefile.in config.h.in etc
$ rm -f aegis.log
$

It is useful if you place therm(1) command in a
shell script, and tell Aegis it is a source file,

because you will have to do this every time.

Now you can have Aegis add any new files by
using the follwoing command:

$ aenf .
$

(Yes, that dot is part of the command.)Note that
if there are no new files, this command will give
you an error, this is expected.

You will have to work out moved and removed
fi les for yourself, and use theaemv(1) and
aerm(1) commands.

At this point you should remove all the files
which were present in the tarball but which dod
not actually change from the change set.The
follwoing command does this quickly and simply:

$ aecpu -unchanged
$

You change set now contains the minimum set of
differences. Goahead and complete it using the
usual Aegis process.

5.7.7. Importing the Next Upstream Patch

In contrast to tarballs, patches tend to be far easier
to cope with. In general, all that is necessary is to
use theaepatch(1) command, something like this:

$ aepatch -receive -file project-x.y.diff
$

which will create a change set, check-out only
those file the patch alters, and copes with creates
and removes automagically.

There are two problems with this method.The
largest problem is patches whicg contains diff for
derived fiels as well. This is unfortunatelyvery
common.

The simplest way of coping with this is to add the
aepatch −trojan option, which will leave the
change in thebeing developedstate, where you
can examine it and use theaenfu(1) command for
any derived files it insisted on creating as primary
source files.

The second problem is much simpler: if a patch
only contains new files, Aegis can’t work out how
much of the leading path it should ignore on the
fi lenames in the patch.You will need to use the
aepatch −remove-prefixoption in this case.

5.8. NoBuild Required

For some projects, particularly web sites and
those written exclusively in interpreted languages,
it may not be necessary to ever actually build your

Page 82 (bl/lib/en/user-guide/c4.8.so) Peter Miller

Aegis UserGuide

project.

For this kind of project you add the following line
to the project configuration file:

build_command = "exit 0";

For a project configured in this way, the aede(1)
and aeipass(1) commands will not check that a
build has been performed.

5.8.1. Why This May Not Be Such A Good
Idea

It isn’t always desirable to configure a project this
way, even when it may initialy appear to be a
good idea.

Web sites:
You can use the build stage to check the
HTML files against the relevant standards
and DTDs. You can also check that all of
you (internal) links are valid, and don’t
point to non-existant pages or anchors.
Sometimes, if you have the space, you can
resolve server side includes, to make it
faster for Apache, by serving static pages.

Interpreted Languages:
A whole lot of simple errors, such as syntax
errors, can be caught by a static check of
the source files. For example, theperl
-c option can syntax check your Perl files
without executing them. See also the GNU
awk −lint option, the Python built-in
compile() function, and thephp -l
(lower case L) option.You can also check
that all include files referenced actually
exist.

Documentation:
Many systems allow documentation to be
extracted from the source files, and turned
into HTML or PDF files (e.g. Doxygen).
This is a sensable thing to do at build time.

Peter Miller (bl/lib/en/user-guide/c8.0.so) Page 83

User Guide Aegis

6. TheDifference Tools

This chapter describes the difference commands
in the project configuration file. Usually these
commands are used by theaegis -DIFFerence
command when differencing files, but they may
be used to accomplish some other things.

The default setting is for Aegis to reject filenames
which contain shell special characters.This
ensures that filenames may be substituted into the
commands without worrying about whether this is
safe. If you set theshell_safe_filenamesfield of
the projectaegis.conffi le to false , you will
need to surround filenames with the${quote
filename} substitution. Thiswill only quote file-
names which actually need to be quoted, so users
usually will not notice.This command applies to
all of the various filenames in the sections which
follow.

6.1. Binary Files

Aegis doesn’t particularly care whether your files
are binary or text. However, your difference and
merge tools certainly will. In general, you need
format-specific difference and merge tools for
each of the file formats used in your project.
Unfortunately, most vendors of software which
make use of proprietary file formats do not supply
difference and merge tools.

The simplest compromise is to treat all files as
text, with manual repairs for binary files.

A more elegant solution is to use a shell script
invoked by the diff_command in the project
aegis.conffi le. Thisshell script examines the file
to determine the file format, and then runs the
appropriate difference tool. Similar considera-
tions apply to themerge_commandfield.

Please note that this support is not present in
Aegis itself because (a) it would cause code bloat,
and (b) it is entirely possible to do with a shell
script launched bydiff_command.

6.2. Interfacing

The diff command is configured by a field of the
project configuration file (aegis.conf).

6.2.1. diff_command

This command is used byaed(1) to produce a dif-
ference listing when file in the development direc-
tory was originally copied from the current ver-
sion in the baseline19.

19 Or this is logically the case.

All of the command substitutions described in
aesub(5) are available. In addition, the following
substitutions are also available:

${ORiginal}
The absolute path name of a file containing
the version originally copied. Usually in
the baseline.

${Input}
The absolute path name of the edited ver-
sion of the file. Usuallyin the development
directory.

${Output}
The absolute path name of the file in which
to write the difference listing. Usually in
the development directory.

An exit status of 0 means successful, even of the
fi les differ (and they usually do). An exit status
which is non-zero means something is wrong.

The non-zero exit status may be used to overload
this command with extra tests, such as line length
limits. The difference files must be produced in
addition to these extra tests.

6.2.2. merge_command

This command is used byaed(1) to produce a dif-
ference listing when file in the development direc-
tory is out of date compared to the current version
in the baseline.

All of the command substitutions described in
aesub(5) are available. In addition, the following
substitutions are also available:

${ORiginal}
The absolute path name of a file containing
the version originally copied. Usually in a
temporary file.

${Most_Recent}
The absolute path name of a file containing
the most recent version. Usuallyin the
baseline.

${Input}
The absolute path name of the edited ver-
sion of the file. Usuallyin the development
directory. Aegis usually moves the source
fi le aside, so that the output can replace the
source file.

${Output}
The absolute path name of the file in which
to write the difference listing. Usually in
the development directory. This is usually
the name of a change source file.

Page 84 (bl/lib/en/user-guide/c8.1.so) Peter Miller

Aegis UserGuide

An exit status of 0 means successful, even of the
fi les differ (and they usually do). An exit status
which is non-zero means something is wrong.

6.3. WhenNo Diff is Required

It is possible to configure a project to omit the diff
step as unnecessary, by the following setting:

diff_command = "exit 0";

This disables all generation, checking and valida-
tion of difference files for each change source file.
The merge functions of theaediff(1) command are
unaffected by this setting.

Peter Miller (bl/lib/en/user-guide/c8.2.so) Page 85

User Guide Aegis

6.4. Usingdiff and merge

These two tools are available with most flavours
of UNIX, but often in a very limited form.One
severe limitation is thediff3(1) command, which
often can only cope with 200 lines of differences.
The best alternative is to use GNU diff, which has
context differences available, and a far more
robustdiff3(1) implementation.

See the earlierInterfacingsection for substitution
details.

6.4.1. diff_command

The entry in the configuration file looks like this:

diff_command =
"set +e; diff -c $original "
"$input > $output; test $? -le 1";

This needs a little explanation:
• This command is always executed with the
shell’s -e option enabled, causing the shell to exit
on the first error. The "set +e" turns this off.
• The diff(1) command exits with a status of 0 if
the files are identical, and a status of 1 if they dif-
fer. Any other status means something horrible
happened. The"test" command is used to change
this to the exit status aegis expects.

The−c option says to produce a context diff. You
may choose to use the−u option, to produce uni-
diffs, if your diff command supports it.

You may also wish to consider ignoring white
space in comparisons, as these tend to be cos-
metic changes and not very interesting to code
reviewers. The −b option of GNU Diff will
ignore changes to the amount of white space, and
the−w option will ignore white space altogether.

Binary files will often cause modern versions of
GNU Diff to exit with an exit status of 2, which is
probably reasonable most of the time. If your
project contains binary files, you may want to
treat all files as text files. Usethe GNU Diff −a
option in this case.

A useful alternative, available with more recent
versions of GNU Diff, is the−U option. Thisis a
more compact form than the−c option, and is
able to give the whole file as context.

diff_command =
"set +e; diff -U999999 $original "
"$input > $output; test $? -le 1";

The exit status must once again be taylored, how-
ev er the output will be the whole source for con-
text, with changes marked by ‘+’ and ‘-’ in the
left margin. This,reviewers need only search for

/ˆ[-+]/ in order to see all edit made to the file.

6.4.2. merge_command

Note: Themerge(1) command is better than this
use of thediff3(1) command. See the RCS chap-
ter for more details.

The entry in the configuration file looks like this:

merge_command =
"(diff3 -e $MostRecent $original \

$input | sed -e ’/ˆw$$/d’ -e \
’/ˆq$$/d’; echo ’1,$$p’) | ed - \
$MostRecent > $output";

This needs a lot of explanation.
• Thediff3(1) command is used to produce an edit
script that will incorporate into $MostRecent, all
the changes between $original and $input.You
may want the−a option, to treat all files as
ACSII.
• The sed(1) command is used to remove the
"write" and "quit" commands from the generated
edit script.
• The ed(1) command is used to apply the gener-
ated edit script to the $MostRecent file, and print
the results on the standard output, which are redi-
rected into the $output file.

6.5. Usingfhist

The fhist program by David I. Bell also comes
with two other utilities,fcompand fmerge, which
use the same minimal difference algorithm.

See the earlierInterfacingsection for substitution
details.

6.5.1. diff_command

The entry in the configuration file looks like this:

diff_command =
"fcomp -w $original $input "
"-o $output";

The -w option produces an output of the entire
fi le, with insertions and deletions marked by
"change bars" in the left margin. Thisis superior
to context difference, as it shows the entire file as
context.

For more information, see thefcomp(1) manual
entry.

6.5.2. merge_command

The entry in the configuration file looks like this:

Page 86 (bl/lib/en/user-guide/c8.3.so) Peter Miller

Aegis UserGuide

merge_command =
"fmerge $original $MostRecent \

$input -o $output -c /dev/null";

The output of this command is similar to the out-
put of the merge_command in the last section.
Conflicts are marked in the output.For more
information, see thefmerge(1) manual entry.

Peter Miller (bl/lib/en/user-guide/c5.0.so) Page 87

User Guide Aegis

7. TheProject Attributes

The project attributes are manipulated using the
aepa(1) command.This command reads a project
attributes file to set the project attributes. This
fi le can be thought of as having several sections,
each of which will be covered by this chapter.
You should see theaepattr(5) manual entry for
more details.

7.1. Descriptionand Access

The descriptionfield is a string which contains a
description of the project.Large amounts of
prose are not required; a single line is sufficient.

The default_development_directoryP field is a
string which contains the pathname of where to
place new development directories. Thepath-
name must be absolute. This field is only con-
sulted if the uconf(5) field of the same name is not
set. Defaultsto $HOME.

The umaskfield is an integer which is set to the
fi le permission mode mask.See umask(2) for
more information. This value will always be
OR’ed with 022, because aegis is paranoid.

7.2. Notification Commands

The develop_end_notify_commandfield is a
string which contains a command to be used to
notify that a change requires reviewing. All of
the substitutions described inaesub(5) are avail-
able. Thisfield is optional, if it is not specified no
notification will be issued.This command could
also be used to notify other management systems,
such as progress and defect tracking, in addition
to notifying users.

The develop_end_undo_notify_commandfield is
a string containing a command used to notify that
a change has been withdrawn from review for fur-
ther development. All of the substitutions
described inaesub(5) are available. Thisfield is
optional, if it is not specified no notification will
be issued.This command could also be used to
notify other management systems, such as
progress and defect tracking, in addition to notify-
ing users.

The re view_pass_notify_commandfield is a string
containing the command to notify that the review
has passed.All of the substitutions described in
aesub(5) are available. Thisfield is optional, if it
is not specified no notification will be issued.
This command could also be used to notify other
management systems, such as progress and defect
tracking, in addition to notifying users.

The re view_pass_undo_notify_commandfield is a
string containing the command to notify that a
review pass has has been rescinded. All of the
substitutions described inaesub(5) are available.
This field is optional, and defaults to the
develop_end_notify_commandfield if not speci-
fied. If neither is specified, no notification will be
issued. Thiscommand could also be used to
notify other management systems, such as
progress and defect tracking, in addition to notify-
ing users.

The re view_fail_notify_commandfield is a string
containing the command to notify that the review
has failed. All of the substitutions described in
aesub(5) are available. Thisfield is optional, if it
is not specified no notification will be issued.
This command could also be used to notify other
management systems, such as progress and defect
tracking, in addition to notifying users.

The integrate_pass_notify_commandfield is a
string containing the command to notify that the
integration has passed.All of the substitutions
described inaesub(5) are available. Thisfield is
optional, if it is not specified no notification will
be issued.This command could also be used to
notify other management systems, such as
progress and defect tracking, in addition to notify-
ing users.

The integrate_fail_notify_commandfield is a
string containing the command to notify that the
integration has failed. All of the substitutions
described inaesub(5) are available. Thisfield is
optional, if it is not specified no notification will
be issued.This command could also be used to
notify other management systems, such as
progress and defect tracking, in addition to notify-
ing users.

7.2.1. Notification by email

The aegis command is distributed with a set of
shell scripts to perform these notifications by
email. They are installed into the
/usr/local/lib/aegis directory, by default; the
actual installed directory at your site is available
as the ${DATa_DIRectory} substitution. The
entries in the project attribute file look like this:

Page 88 (bl/lib/en/user-guide/c5.0.so) Peter Miller

Aegis UserGuide

develop_end_notify_command =
"$sh $datadir/de.sh $project $change";

develop_end_undo_notify_command =
"$sh $datadir/deu.sh $project $change";

review_pass_notify_command =
"$sh $datadir/rp.sh $project $change \
$developer $reviewer";

review_pass_undo_notify_command =
"$sh $datadir/rpu.sh $project $change \
$developer";

review_fail_notify_command =
"$sh $datadir/rf.sh $project $change \
$developer $reviewer";

integrate_pass_notify_command =
"$sh $datadir/ip.sh $project $change \
$developer $reviewer $integrator";

integrate_fail_notify_command =
"$sh $datadir/if.sh $project $change \
$developer $reviewer $integrator";

Please note: the exit status of all these commands
will be ignored.

7.2.2. Notification by USENET

The aegis command is distributed with a set of
shell scripts to perform these notifications by
USENET. They are installed into the
/usr/local/lib/aegis directory, by default; the
actual installed directory at your site is available
as the ${DATa_DIRectory} substitution. The
entries in the project attribute file look like this:

develop_end_notify_command =
"$sh $datadir/de.inews.sh $p $c alt.$p";

develop_end_undo_notify_command =
"$sh $datadir/deu.inews.sh $p $c alt.$p";

review_pass_notify_command =
"$sh $datadir/rp.inews.sh $p $c alt.$p";

review_pass_undo_notify_command =
"$sh $datadir/rpu.inews.sh $p $c alt.$p";

review_fail_notify_command =
"$sh $datadir/rf.inews.sh $p $c alt.$p";

integrate_pass_notify_command =
"$sh $datadir/ip.inews.sh $p $c alt.$p";

integrate_fail_notify_command =
"$sh $datadir/if.inews.sh $p $c alt.$p";

The last argument to each command is the news-
group to post the article in, you may want to use
some other group.Note that "$p" is an abbrevia-
tion for "$project" and "$c" is an abbreviation for
"$change".

7.3. ExemptionControls

The developer_may_review field is a boolean.If
this field is true, then a developer may review her
own change. Thisis probably only a good idea
for projects of less than 3 people. The idea is for
as many people as possible to critically examine a
change.

The developer_may_integratefield is a boolean.
If this field is true, then a developer may integrate
her own change. This is probably only a good
idea for projects of less than 3 people. The idea is
for as many people as possible to critically exam-
ine a change.

The re viewer_may_integratefield is a boolean.If
this field is true, then a reviewer may integrate a
change she reviewed. This is probably only a
good idea for projects of less than 3 people.The
idea is for as many people as possible to critically
examine a change.

The developers_may_create_changesfield is a
boolean. Ifthis field is true then developers may
create changes, in addition to administrators.
This tends to be a very useful thing, since devel-
opers find most of the bugs.

The default_test_exemptionfield is a boolean.
This field contains what to do when a change is
created with no test exemption specified. The
default is "false", i.e. no testing exemption, tests
must be provided.

This kind of blanket exemption should only be set
when a project has absolutely no functionality
available from the command line; examples
include X11 programs.The program could possi-
bly be improved by providing access to the func-
tionality from the command line, thus allowing
tests to be written.

7.3.1. OnePerson Projects

The entries in the project attributes file for a one
person project look like this:

developer_may_review = true;
developer_may_integrate = true;
reviewer_may_integrate = true;
developers_may_create_changes = true;

All of the staff roles (administrator, dev eloper,
reviewer and integrator) are all set to be the same
user.

7.3.2. Two Person Projects

A two person project has the opportunity for each
to review the other’s work.

The entries in the project attributes file for a two
person project look like this:

developer_may_review = false;
developer_may_integrate = true;
reviewer_may_integrate = true;
developers_may_create_changes = true;

Peter Miller (bl/lib/en/user-guide/c5.0.so) Page 89

User Guide Aegis

All of the staff roles (developer, reviewer and
integrator) are all set to allow both users.

7.3.3. Larger Projects

Once you have 3 or more staff on a project, you
can assign all of the roles to separate people.The
idea is for the greatest number of eyes to see each
change and detect flaws before they reach the
baseline.

The entries in the project attributes file for a three
person project look like this:

developer_may_review = false;
developer_may_integrate = false;
reviewer_may_integrate = false;
developers_may_create_changes = true;

For smaller teams, everyone may be a reviewer.
As the teams get larger, the more experienced
staff are often the reviewers, rather than everyone.

7.3.4. RSSFeeds

Aegis has the ability to publish RSS 2.0 items to
an RSS channel when changesets transition to a
new state. Thisis an optional feature that must be
enabled and configured via the project-specific
attributes.

Project administrators can configure each change
of state to cause an RSS item to be added to a
specified RSS channel.Each transition is individ-
ually controlled, allowing each transition to be
recorded in separate channels, or all transitions in
the same channel, or some combination thereof.

Generating RSS items for particular state transi-
tions is enabled by therss:feedfilenameproject-
specific attibute. Theformat of this attribute is:

name = "rss:feedfilename-<filename>";
value = "<state> [<state> <state>]";

The name part of this attribute includes afile-
name,which is the name of the RSS feed file
(channel) to which the item is to be added.The
valuepart of the attribute is a space-separated list
of states that will cause an RSS item to be added
to the specified file. For example,

name = "rss:feedfilename-foo.xml";
value = "awaiting_review

awaiting_integration";

will cause items to be added to the channel stored
in the file "foo.xml" when a changeset transitions
into the awaiting_review and awaiting_integration
states.

The channel description can be specified using
the rss:feeddescriptionattribute. Theformat of

this attribute is:

name = "rss:feeddescription-<filenane>";
value = "<Some description>";

For example,

name = "rss:feeddescription-foo.xml";
value = "This is a description";

will cause the <description> sub-element of the
<channel> element stored in the file foo.xml to
have the value "This is a description". If this
attribute is not used, the default description is:
"Feed of changes in state..."

The channel title can be specified using the
rss:feedtitleattribute. Theformat of this attribute
is:

name = "rss:feedtitle-<filename>";
value = <Some title>;

For example,

name = "rss:feedtitle-foo.xml";
value = "This is a title";

will cause the <title> sub-element of the <chan-
nel> element stored in the file foo.xml to have the
value "Project ...: This is a title" The title will
always start with the word "Project" and the
project name. If this attribute is supplied, this
default title is appended with the test provided.

The channel language can be specified using the
rss:feedlanguage attribute. The format of this
attribute is:

name = "rss:feedlanguage- filename";
value = " language";

For example,

name = "rss:feedlanguage-foo.xml";
value = "en-AU";

will cause the <language> sub-element of the
<channel> element stored in the file foo.xml to
have the valueen-AU If not specified, the default
value of the language sub-element is "en-US".

7.3.4.1. Serving RSS Channels

aeget is able to serve up RSS channels, with an
appropriate URL. An example URL is

http://somehost/cgi-bin/aeget/proj.1.0/?rss+foo.xml

The key aspect of the URL shown is the
"?rss+foo.xml" modifier. "foo.xml" should obvi-
ously be replaced with the name of your RSS
channel feed (that is, the filename specified with
the "rss:feedfilename" project-specified
attribute(s).

Page 90 (bl/lib/en/user-guide/c5.0.so) Peter Miller

Aegis UserGuide

In order to read the RSS channels, it is recom-
mended to point your RSS aggregator of choice to
the appropriate URL. In order to make determin-
ing the URL easy, aeget will also place "RSS"
icons next to the individual state links on the main
project web page ("proj.1.0/?menu") if there is an
RSS channel configured to include that changeset
state.

7.3.4.2. Linksin RSS Channels

Links within RSS feed files are stored using a
placeholder ("@@SCRIPTNAME@@") instead
of the serving script in URLs.This is done
because the code that knows about hte URL of a
particular installation is encapsulated within
aeget.

The placeholder is replaced with the real script-
name when the file is served by aeget.

Peter Miller (bl/lib/en/user-guide/c11.0.so) Page 91

User Guide Aegis

8. Testing

This chapter discusses testing, and using Aegis to
manage your tests and testing.

8.1. Why Bother?

Writing tests is extra work, compared to the way
many small (and some not-so-small) software
shops operate. For this reason, the testing
requirement may be turned off.

The win is that the tests hang around forever,
catching minor and major slips before they
become embarrassing "features" in a released
product. Prevention is cheaper than cure in this
case, the tests save work down the track.

All of the "extra work" of writing tests is a long-
term win, where old problems never again reap-
pear. All of the "extra work" of reviewing
changes means that another pair of eyes sees the
code and finds potential problems before they
manifest themselves in shipped product.All of
the "extra work" of integration ensures that the
baseline always works, and is always self-consis-
tent. All of the "extra work" of having a baseline
and separate development directories allows mul-
tiple parallel development, with no inter-devel-
oper interference; and the baseline always works,
it is never in an "in-between" state.In each case,
not doing this "extra work" is a false economy.

The existence of these tests, though, is what deter-
mines which projects are most suited to Aegis and
which are not. It should be noted that suitability
is a continuous scale, not black-and-white.With
effort and resources, almost anything fits.

8.1.1. Projects for which Aegis’ Testing is Most
Suitable

Projects most suited to supervision by Aegis are
straight programs. What the non-systems-pro-
grammers out there call "tools" and sometimes
"applications". Theseare programs which take a
pile of input, chew on it, and emit a pile of output.
The tests can then compare actual outputs with
expected outputs.

As an example, you could be writing ased(1)
look-alike, a public domain clone of theUNIX sed
utility. You could write tests which exercise every
feature (insertion, deletion, etc.)and generate the
expected output with the realUNIX sed. You write
the code, and run the tests; you can immediately
see if the output matches expectations.

This is a simple example. Morecomplex exam-
ples exist, such as Aegis itself. The Aegis

program is used to supervise its own develop-
ment. Tests consist of sequences of commands
and expected results are tested for.

Other types of software have been developed
using Aegis: compilers and interpreters, client-
server model software, magnetic tape utilities,
graphics software such as a ray-tracer. The range
is vast, but it is not all types of software.

8.1.2. Projects for which Aegis’ Testing is Use-
ful

For many years there have been full-screen appli-
cations on text terminals. In more recent times
there is increasing use of graphical interfaces.

In developing these types of programs it is still
possible to use Aegis, but several options need to
be explored.

8.1.2.1. Testing Via Emulators

There are screen emulators for both full-screen
text and X11 available. Usingthese emulators, it
is possible to test the user interface, and test via
the user interface. Asyet, the author knows of no
freely available emulators suitable for testing via
Aegis. If you find one, please let me know.

8.1.2.2. LimitedTesting

You may choose to use Aegis simply for its abil-
ity to provide controlled access to a large source.
You still get the history and change mechanisms,
the baseline model, the enforced review. You
simply don’t test all changes, because figuring out
what is on the screen, and testing it against expec-
tations, is too hard.

If the program has a command line interface, in
addition to the full-screen or GUI interface, the
functionality accessible from the command line
may be tested using Aegis.

It is possible that "limited testing" actually means
"no testing", if you have no functionality accessi-
ble from the command line.

8.1.2.3. Testing Mode

Another alternative is to provide hooks into your
program allowing you to substitute a file for user
input, and to be able to trigger the dump of a
"screen image". The simulated user input can
then be fed to the program, and the screen dump
(in some terminal-independent form) can be com-
pared against expectations.

This is easier for full-screen applications, than for
X11 applications. You need to judge the cost-

Page 92 (bl/lib/en/user-guide/c11.1.so) Peter Miller

Aegis UserGuide

benefit trade-off. Cost of development, cost of
storage space for X11 images, cost ofnot testing.

8.1.2.4. ManualTests

The Aegis program provides a manual test facil-
ity. It was originally intended for programs which
required some physical action from a user, such as
"unplug Ethernet cable now" or "mount tape
XG356B now". It can also be used to have a user
confirm that some on-screen activity has hap-
pened.

The problem with manual tests is that they simply
don’t happen. Itis far more pleasant to say "run
the automatic tests" and go for a cup of coffee,
than to wait while the computer thinks of mind-
less things to ask you to do.This is human
nature: if it can be automated, it is more likely to
happen.

8.1.2.5. UnitTests

Many folks think of testing as taking the final
product and testing it.It is also possible to build
specialized unit tests, which exercise specific por-
tions of the code. These tests can then be admin-
istrated by Aegis, even if the full-blown GUI can-
not be.

8.1.3. Projects for which Aegis’ Testing is
Least Useful

Another class of software is things like operating
system kernels and firmware; things which are
"stand alone". This isolated nature makes it the
most difficult to test: to test it you want to provide
physical input and watch the physical output.By
its very nature, it is hard to put into a shell script,
and thus hard to write an Aegis test for.

The above chapter was written in 1991. At this
writing (1999) there are projects like ×Linux and
operating systems like VxWorks. Theseare all
embedded, and all have excellent network and
download support. It is entirely possible (with
design support!) to write automatically testable
embedded systems.

8.1.3.1. OperatingSystems

It is not impossible, just that few of us hav e the
resources to do it.You need to have a test system
and a testing system: the test system has all of its
input and outputs connected to the outputs and
inputs of the testing system. That is, the testing
system controls and drives the test system, and
watches what happens.

For example, in the olden days before everyone
had PC and graphics terminals, there were only
serial interfaces available. Many operating sys-
tem vendors tested their products by using com-
puters connected to each serial line to simulate
"user input". The system can be rebooted this
way, and using dual-ported disks allows different
versions of a kernel to be tried, or other test con-
ditions created.

For software houses which write kernels, or
device drivers for kernels, or some other kernel
work, this is bad news: the Aegis program is
probably not for you. It is possible, but there may
be more cost-effective dev elopment strategies. Of
course, you could always use the rest of Aegis,
and ignore the testing part.

However, Aegis has been used quite successfully
to develop Linux kernel modules.With suitable
sudo(1) configuration to permit access toins-
mod(1) &co, developers can write test scripts
which load device drivers, try them out, and
unload them again, all without universal root
access.

Also, the advent of modern tools, such as
VMware, which allow one operating system to
"host" another, may also permit straightforward
testing of kernels and operating systems.

8.1.3.2. Firmware

Firmware is a similar deal: you need some way to
download the code to be tested into the test sys-
tem, and write-protect it to simulate ROM, and
have the necessary hardware to drive the inputs
and watch the outputs.

As you can see, this is generally not available to
run-of-the-mill software houses, but then they
rarely write firmware, either. Those that do write
fi rmware usually have the download capabilities,
and some kind of remote operation facility.

However, this omits the possibility of not only
cross compiling your code for the target system,
but also compiling your code to run natively on
the build system. The firmware (in the host incar-
nation) then falls into one of the categories above,
and may be readily tested.This does not relieve
you of also testing the firmware, but it increases
the probability that the firmware isn’t completely
useless before you download it.

By using an object oriented language, such as
C++, the polymorphism necessary to cope with
multiple environments can be elegantly hidden
behind a pure abstract base class.Alternatively,

Peter Miller (bl/lib/en/user-guide/c11.1.so) Page 93

User Guide Aegis

by using a consistent API, you can accomplish the
necessary sleight-of-hand at link time.

The unit test method mentioned earlier is also
very useful for firmware, even if the device "as a
whole" cannot be tested.

Page 94 (bl/lib/en/user-guide/c11.2.so) Peter Miller

Aegis UserGuide

8.2. Writing Tests

This section describes a number of general guide-
lines for writing better tests, and some pitfalls to
be avoided.

There are also a number of suggestions for porta-
bility of tests in specific scripting languages; this
will definitely be important if you are writing
software to publish on WWW or for FTP. Porta-
bility is often requiredwithin an organization,
also. Examplesinclude a change in company pol-
icy from one 386UNIX to another (e.g. company
doesn’t like Linux, now you must use AT&T’s
SVR4 offering), or the development team usegcc
until the company finds out and forces you to use
the prototype-less compiler supplied with the
operating system, or even that the software being
developed must run under bothUNIX and Win-
dows NT.

Note, also, that when using Aegis’ heterogeneous
build support, portability will again feature
prominently.

8.2.1. Contributors

I’d like to thank Steven Knight
<knight@baldmt.com> for writing portions of
this information.

If other readers have additional testing techniques,
or use other scripting languages, contributions are
welcome.

8.2.2. GeneralGuidelines

This section lists a number of general guidelines
for all aegis tests, regardless of implementation
language. Usethis section to guide how you
write tests if the scripting language you choose is
not specifically covered in greater detail below.

8.2.2.1. Choiceof Scripting Language

The aegis program uses thetest_commandfield of
the projectaegis.conffi le to specify how tests are
executed. Thedefault value of thetest_command
field:

test_command = "$shell $file_name";

specifies that tests be Bourne shell scripts.You
may, howev er, change the value oftest_command
to specify some other scripting language inter-
preter, which allows you to write your test scripts
in whatever scripting language is appropriate for
your project. The Perl or Python scripting lan-
guages, for example, could be used to create test
scripts that are portable to systems other than
UNIX systems.

This means that if you can write it in your script-
ing language of choice, you can test it.This
includes such things as client-server model inter-
faces, and multi-user synchronization testing.

8.2.2.2. NoExecute Permission

Under aegis, script files do not have execute per-
mission set, so they should always be invoked by
passing the script file to the interpreter, not
executing the test directly:

sh filename
perl filename

8.2.2.3. NoCommand-Line Arguments

Tests should not expect command line arguments.
Tests are not passed the name of the project nor
the number of the change.

8.2.2.4. Identifyingthe Scripting Language

Even though aegis does not execute the test script
directly, it is a good idea to put some indication of
its scripting language into the test script.See the
sections below for suggested "magic number"
identification of scripts in various languages.

8.2.2.5. Current Directory

Tests are always run with the current directory set
to either the development directory of the change
under test when testing a change, or the integra-
tion directory when integrating a change, or the
baseline when performing independent tests.

A test must not make assumptions about where it
is being executed from, except to the extent that it
is somewhere a build has been performed.A test
must not assume that the current directory is
writable, and must not try to write to it, as this
could damage the source code of a change under
development, potentially destroying weeks of
work.

8.2.2.6. CheckExit Status and Return Values

A test script should check the exit status or return
value of every single command or function call,
ev en those which cannot fail. Checkingthe exit
status or return value of every statement in the
script ensures that strange permission settings, or
disk space problems, will cause the test to fail,
rather than plow on and produce spurious results.
See the sections below for specific suggestions on
checking exit status or return values in various
scripting languages.

Peter Miller (bl/lib/en/user-guide/c11.2.so) Page 95

User Guide Aegis

8.2.2.7. Temporary Directory

Tests should create a temporary subdirectory in
the operating system’s temporary directory (typi-
cally /tmp on UNIX systems) and then change its
working directory (cd) to this directory. This iso-
lates any vandalism that the program under test
may indulge in, and serves as a place to write
temporary files.

At the end of the test, it is sufficient to change
directory out of the temporary subdirectory and
then remove the entire temporary subdirectory
hierarchy, rather than track and remove all test
fi les which may or may not be created.

Some UNIX systems provide other temporary
directories, such as/var/tmp, which may provide
a better location for a temporary subdirectory for
testing (more file system space available, admin-
istrator preference, etc.).Test scripts wishing to
accomodate alternate temporary directories
should use the TMPDIR environment variable (or
some other environment variable appropriate to
the operating system hosting the tests) as the loca-
tion for creating their temporary subdirectory,
with /tmp as a reasonable default if TMPDIR is
not set.

8.2.2.8. Trap Interrupts

Test scripts should catch appropriate interrupts (1
2 3 and 15 onUNIX systems) and cause the test to
fail. The interrupt handler should perform any
cleanup the test requires, such as removing the
temporary subdirectory.

8.2.2.9. PAGER

If the program under test invokes pagers on its
output, a lamore(1) et al, it should be coded to
use the PAGER environment variable. Tests of
such programs should always set PAGER to cat
so that tests always behave the same, irrespective
of invocation method (either by aegis or from the
command line).

8.2.2.10. Auxiliary Files

If a test requires extra files as input or output to a
command, it must construct them itself from in-
line data. (See the sections below for more spe-
cific information about how to use in-line data in
various scripting languages to create files.)

It is almost impossible to determine the location
of an auxiliary file, if that auxiliary file is part of
the project source.It could be in either the
change under test or the baseline.

8.2.2.11. NewTest Templates

Regardless of your choice of scripting language, it
is possible to specify most of the repetitious items
above in a file templateused every time a user
creates a new test. Seethe aent(1) command for
more information.

Having the machine do it for you means that you
are more likely to do it.

8.2.3. Bourne Shell

The Bourne shell is available on all flavors of the
UNIX operating system, which allows Bourne
shell scripts to be written portably across those
systems. Hereare some specific guidelines for
writing aegis tests using Bourne shell scripts.

8.2.3.1. MagicNumber

Some indication that the test is a Bourne shell
script is a good idea. While many systems accept
that a first line starting with a colon is a Bourne
shell "magic number", a more widely understood
"magic number" is

#! /bin/sh

as the first line of the script file.

8.2.3.2. CheckExit Status

A Bourne shell test script should check the exit
status of every single command, even those which
cannot fail. Do not rely on, or use, theset -eshell
option (it provides no ability to clean up on error).

Checking the exit status involves testing the con-
tents of the$? shell variable. Donot use anif
statement wrapped around an execution of the
program under test as this will miss core dumps
and other terminations caused by signals.

8.2.3.3. Temporary Directory

Bourne shell test scripts should create a tempo-
rary subdirectory in/tmp (or the directory speci-
fied by the TMPDIR environment variable) and
thencd into this directory. At the end of the test,
or on interrupt, the script shouldcd out of the
temporary subdirectory and thenrm -rf it.

8.2.3.4. Trap Interrupts

Use thetrap statement to catch interrupts 1 2 3
and 15 and cause the test to fail. Thisshould per-
form any cleanup the test requires, such as remov-
ing the temporary directory.

Page 96 (bl/lib/en/user-guide/c11.2.so) Peter Miller

Aegis UserGuide

8.2.3.5. Auxiliary Files

If a test requires extra files as input or output to a
command, it must construct them itself, using
heredocuments:

cat <<EOF >file
contents
of the
file
EOF

Seesh(1) for more information.

8.2.3.6. [test]

You should always use thetest command, rather
than the square bracket form, as many systems do
not have the square bracket form, if you publish
to USENET or for FTP.

8.2.3.7. OtherBourne Shell Portability Issues

The above list covers the most common Bourne
shell issues that are relevant to most aegis tests.
The documentation for the GNU autoconf utility,
however, contains a more exhaustive list of
Bourne shell portability issues. If you want (or
need) to make your tests as portable as possible,
see the documentation for GNU autoconf.

8.2.4. Perl

Perl is a popular open-source scripting language
available on a number of operating systems.Here
are some specific guidelines for writing aegis tests
using Perl scripts.

8.2.4.1. MagicNumber

Some indication that the test is a Perl script is a
good idea. Because Perl is not installed in the
same location on allUNIX systems, a first-line
"magic number" such as:

#! /usr/local/bin/perl

that hard-codes the Perl path name will not be
portable if you publish your tests.

If the env(1) program is available, a more portable
"magic number" for Perl is:

#! /usr/bin/env perl

8.2.4.2. CheckReturn Values

A Perl test script should check the return value
from every subroutine, even those which cannot
fail.

A Perl test script should also check the exit status
of every command it executes. Checkingthe exit

status involves testing the contents of the$? vari-
able. Seethe Perl documentation on "Predefined
Variables" for details.

8.2.4.3. Temporary Directory

Perl test scripts should create a temporary subdi-
rectory in /tmp (or the directory specified by the
$ENV{TMPDIR} environment variable) and
then chdir into this directory. At the end of the
test, or on interrupt, the script shouldchdir out of
the temporary subdirectory and then remove it
and its hierarchy. A portable way to do this
within a Perl script:

use File::Find;
finddepth(sub { if (-d $_) {

rmdir($_)
} e lse {

unlink($_)
} } ,
$dir);

8.2.4.4. Trap Interrupts

Use Perl’s $SIGhash to catch interrupts for HUP,
INT, QUIT and TERM and cause the test to fail.
This should perform any cleanup the test requires,
such as removing the temporary directory. A very
simple example:

$SIG{HUP} =
$SIG{INT} =
$SIG{QUIT} =
$SIG{TERM} =

sub { &cleanup; exit(2) };

8.2.4.5. Auxiliary Files

If a test requires extra files as input or output to a
command, it must construct them itself, using in-
line data such ashere documents See the Perl
documentation for more information.

8.2.4.6. ExitValues

Aegis expects tests to exit with a status of 0 for
success, 1 for failure, and 2 for no result. The fol-
lowing code fragment will map all failed (non-
zero) exit values to an exit status of 1, regardless
of what Perl module called exit:

END { $? = 1 if $? }

A more complete example could check conditions
and set the exit status to 2 to indicate NO
RESULT.

Peter Miller (bl/lib/en/user-guide/c11.2.so) Page 97

User Guide Aegis

8.2.4.7. Modules

Perl supports the ability to re-use modules of
common routines, and to search several directo-
ries for modules. This makes it convenient to
write modules to share code among the tests in a
project.

Any modules that are used by your test scripts
(other than the standard modules included by
Perl) should be checked in to the project as source
fi les. Test scripts should then import the mod-
ule(s) via the normal Perl mechanism:

use MyTest;

When a test is run, the module file may actually
be in the baseline directory, not the development
or integration directories.To make sure that the
test invocation finds the module, thetest_com-
mand field in the projectaegis.conffi le should
use the Perl-I option to search first the local
directory and then the baseline:

test_command =
"perl -I. -I${BaseLine} \
${File_Name}"

or, alternatively, if you had created your Perl test
modules in a subdirectory namedaux:

test_command =
"perl -I./aux -I${BaseLine}/aux \
${File_Name}"

For details on the conventions involved in writing
your own modules, consult the Perl documenta-
tion or other reference work.

Actually, you need to use the ${search_path} sub-
stitution. I’ll have to fix this one day.

8.2.4.8. TheTest::Cmd Module

A Test::Cmd module is available on CPAN (the
Comprehensive Perl Archive Network) that makes
it easy to write Perl scripts that conform to aegis
test requirements. The Test::Cmd module sup-
ports most of the guidelines mentioned above,
including creating a temporary subdirectory,
cleaning up the temporary subdirectory on exit or
interrupt, writing auxiliary files from in-line con-
tents, and provides methods for exiting on suc-
cess, failure, or no result. The following example
illustrates some of its capabilities:

#! /usr/bin/env perl
use Test::Cmd;
$test = Test::Cmd->new(prog

=> ’program_under_test’,
workdir => ’’);

$ret = $test->write(’aux_file’, <<EOF);
contents of file
EOF
$test->no_result(! $ret =>

sub { print STDERR
"Couldn’t write file: $!\\n"});

$test->run(args => ’aux_file’);
$test->fail($? != 0);
$test->pass;

The various methods supplied by the Test::Cmd
module have a number of options to control their
behavior.

The Test::Cmd module manipulates file and path
names using the operating-system-independent
File::Spec module, so the Test::Cmd module can
be used to write tests that are portable to any
operating system that runs Perl and the program
under test.

The Test::Cmd module is available on CPAN.
See the module’s documentation for details.

8.2.4.9. TheTest and Test::Harness Modules

Perl supplies two modules, Test and Test::Har-
ness, to support its own testing infrastructure.
Perl’s tests use different conventions than aegis
tests; specifically, Perl tests do not use the exit
status to indicate the success or failure of the test,
like aegis expects. TheTest::Harness module
expects that Perl tests report the success or failure
of individual sub-tests on standard output, and
always exit with a status of 0 to indicate the script
tested everything it was supposed to.

This difference makes it awkward to use the Test
and Test::Harness modules for aegis tests. In
some circumstances, though, you may be forced
to write tests using the Test and Test::Harness
modules--for example, if you use aegis to develop
a Perl module for distribution--but still wish to
have the tests conform to aegis conventions dur-
ing development.

This can be done by writing each test to use an
environment variable to control whether its exit
status should conform to aegis or Perl conven-
tions. Thisis easy when using the Test module to
write tests, as itsonfail method provides an
appropriate place to set the exit status to non-zero
if the appropriate environment variable is set.
The following code fragment at or near the begin-
ning of each Perl test script accomplishes this:

Page 98 (bl/lib/en/user-guide/c11.2.so) Peter Miller

Aegis UserGuide

use Test;
BEGIN { plan tests => 3,

onfail => sub {
$? = 1 if $ENV{AEGIS_TEST}
}

}

(See the documentation for the Test module for
information about using it to write tests.)

There then needs to be a wrapper Perl script
around the execution of the tests to set the envi-
ronment variable. Thefollowing script (called
mytest.pl for the sake of example) sets the
AEGIS_TEST environment variable expected by
the previous code fragment:

use Test::Harness;
$ENV{AEGIS_TEST} = 1;
open STDOUT, ">/dev/null" || exit (2);
runtests(@ARGV);
END { $? = 1 if $?;

print STDERR $?
? " FAILED" : "PASSED",
"\n"; }

It also makes its output more nearly conform to
aegis’ examples by redirecting standard output to
/dev/null and restricting its reporting of results to
a simple FAILED or PASSED on standard error
output.

The last piece of the puzzle is to modify the
test_commandfield of the projectaegis.conffi le
to have themytest.plscript call the test script:

test_command =
"perl -I. -I${BaseLine} mytest.pl \
${File_Name}"

The Test and Test::Harness modules are part of
the standard Perl distribution and do not need to
be downloaded from anywhere. Becausethese
modules are part of the standard distribution, they
can be used by test scripts without being checked
in to the project.

8.2.4.10. Granularity By Steven Knight
<knight@baldmt.com>

The granularity of Perl and Aegis tests mesh very
well at the individual test file (.t) level. Aegis and
Test::Harness are simply different harnesses that
expect slightly different conventions from the
tests they execute: Aegis uses the exit code to
communicate an aggregate pass/fail/no result sta-
tus, Test::Harness examines the output from tests
to decide if a failure occurred.

It’s actually pretty easy to accomodate both con-
ventions. You can do this as easily as setting the
test_command variable in the project

configuration file to something like the following:

test_command =
"perl -MTest::Harness -e ’runtests(\"$fn\"); \
END {$$? = 1 if $$? }’";

In reality, you’ll likely need to add variable
expansions to generate -I or other Perl options for
the full Aegis search path.The END block takes
care of mapping any non-zero Test::Harness exit
code to the ’1’ that Aegis expects to indicate a
failure.

The only thing you really lose here is the
Test::Harness aggregation of results and timing at
the end of a multi-test run. This is more than off-
set by having Aegis track which tests need to be
run for a given change.

Alternatively, you can execute the .t files directly,
not through Test::Harness::runtests. Thisis easily
accomodated using the onfail method from the
standard Perl Test module in each test.Here’s a
standard opening block for .t tests

use Test;
BEGIN { $| = 1; plan tests => 19,

onfail => sub { $? = 1 if $ENV{AEGIS_TEST} }
}
END {print "not ok 1\n" unless $loaded;}
use Test::Cmd;
$loaded = 1;
ok(1);

That’s it (modulo specifying the appropriate num-
ber of tests). My .t tests now use the proper exit
status to report a failure back to Aegis. Theonly
other piece is configuring the project’s "test_com-
mand" value to set the AEGIS_TEST environ-
ment variable.

You can also use an intermediate script that also
redirects the tests’s STDOUT to /dev/null, if you
are used to and like the coarser PASSED/FAILED
status.

8.2.5. BatchTesting

The usual “test_command” f ield of the project
aegis.conffi le runs a single test at a time.When
you have a multi-CPU machine, or are able to dis-
tribute the testing load across a range of
machines, it is often desirable to do so.The
“batch_test_command” of the project configura-
tion file is for this purpose.Seeaepconf(5) for
more information.

Peter Miller (bl/lib/en/user-guide/c9.0.so) Page 99

User Guide Aegis

9. Branching

This chapter describes the concept of branching
implemented by Aegis. Theprocess described in
previous chapters makes changes to a project’s
master source.

Baseline

1 2 3

Branching generalizes this change model, by
allowing the baseline to be treated as a change, or
the ability to treat a change as a baseline.

Trunk Baseline

Branch 1
1.1 1.2

Since branchs are sometimes considered as a
changes it is useful to expand on the differences.
A branch, or trunk, baseline may have children
which are eitherchanges or deeperbranches.
From this perspective the difference is that noth-
ing may be modified directly in a branch. A
branch is an integrated baseline with all the asso-
ciated protection. To modify a branch one must
open a change under that branch.

Looking upward from a change under a branch,
its parentis the branch baseline, and itsgrandpar-
ent is theparent of the branch. We will see this
used later when we talk about ending a branch.

A significant feature of Aegis branches is that,
because they are an extension of thechangecon-
cept, they are expected to end, and be integrated
back intotheir baseline, orparent,in time.

The most common case of this is in project
releases.

A branch in thebeing developedstate may have
changes made to it, and/or deeper branches.This
may recurse to any lev el. Oncea branch is com-
plete, no further deeper branches may be created
from that branch.

9.1. How To Use Branching

To access a project branch, the project name has
the branch appended, separated by a dot or a
hyphen. For example: branch 1 of project "aegis"
is referred to as "aegis.1". To reference changes
on this branch, use this compound project name
wherever you would normally use a project name.

Traditional 2-level project release names are
obtained by using a further level of branching.
For example: by creating branch 0 of project
"aegis.1", there would be a branch accessed as
project "aegis.1.0".

By default, these two lev el of project branching
are created automatically when theaenpr(1) com-
mand is used.You need to use the-VERSion
option to make this deeper or shallower, or hav e
different numbering.

Command BranchesCreated

aenpr foo foo, foo.1,
foo.1.0

aenpr foo -vers
2.4.1

foo, foo.2,
foo.2.4, foo.2.4.1

aenpr foo.7 foo, foo.7
fooaegis -npr foo

-vers -

The last is a special case, to enable a project to be
created with no default branches (it’s also hard to
get the empty string past the alias).

To add branching and release level management
to an existing project on uses theaenbr(1) com-
mand at any lev el. Say we already have
foo.1.0 , which represents version 1.0 of our
software. One method of release level manage-
ment would be to integratefoo.1.0into its parent
foo.1 and then doaenbr -p foo.1would create
foo.1.1 representing version 1.1.Eventually we
might want to make a major version release and
would integratefoo.1 into its parent fooand then
do aenbr -p foo, which would createfoo.2. Then
if we do aenbr -p foo.2we createfoo.2.0, for
development of version 2.0 of our software.

9.2. Transition Using aenrls

To convert a project from the old-style to the new
branching style, use theaenrls(1) command.

If you give no second project name, the new name
is generated by removing the numeric suffixes. If
you did not give a -VERSion option, the numeric
suffixes will be used to determine the next ver-
sion, by adding one to the previous minor version
number. The new project is then created rather
like theaenpr(1) command.

The files of the old project are copied across as an
implicit change on the newly created branch
within the new project. If the new project name
already exists, and is a new-style project, theaen-
rls(1) command will attempt to make the appro-
priate numbered branches.If the new project
already exists and is an old-style project, or it
exists and the branch number(s) are already in
use, aenrls(1) will emit an error and fail. The
aenrls(1) command only works on old-style
projects, and always converts them to new style

Page 100 (bl/lib/en/user-guide/c9.0.so) Peter Miller

Aegis UserGuide

projects.

Planning you branch numbers is essential.If you
want to use 3-level branch numbers (e.g.
"aegis.2.3.1") at some time in the future, then you
must use 3-level version numbers all the way
through (e.g. "aegis.2.3.0"). This is because
change numbers and branch numbers come from
the same common pool of numbers. Once change
one has been used (e.g. "aegis.2.3.C001"), then
branch one is no longer available (e.g.
"aegis.2.3.1.C042" conflicts).

9.3. Cross Branch Merge

From time to time you will want to merge the
changes from one branch into a change.This
may be done using a cross-branch merge. Thisis
done by specifying the−BRanch option to the
aegis -diff -merge-onlycommand.

The most common cross branch merge is when
the project’s files are out-of-date. Because it is
not possible to useaegis -diff -merge-only directly
on the branch, this must be in a change on the
branch. Asa short-cut, the branch may be speci-
fied using the−grandparentoption.

9.4. Multiple Branch Development

It is very common for a bug fix to need to be
applied to more than one branch at once.The
change could be applied to the common ancestor
branch, however this may not be effective in the
branch immediately. An alternative is to use the
aegis -clone command, which can be used to
identically reproduce a change on another branch.

9.5. Hierarchy of Projects

It would be nice if there was some way to use one
project as a sort of "super change" to a "super
project", so that large teams (say 1000 people)
could work as lots of small teams (say 100 peo-
ple). As a small team gets their chunk ready,
using the facilities provided to-date by Aegis, the
small team’s baseline is treated as a change to be
made to the large team baseline.

This idea can be extended quite naturally to any
depth of layering.

After readingTr ansaction Oriented Configuration
Management: A Case StudyPeter Fieler, Grace
Downey, CMU/SEI-90-TR-23, this is not a new
idea. It also provides some ideas for how to do
branching sensibly, and was influential in the
design of Aegis’ branching.

9.5.1. Fundamentals

Aegis has everything you need to have a super
project and a number of sub-projects. All you
need to do is create an active branch for each sub-
project. Eachbranch gets a separate baseline,viz

% aenpr gizmo.0.1
project "gizmo": created
project "gizmo.0": created
project "gizmo.0.1": created
%

Now, for each of your desired sub-projects, create
another branch

aenbr -p gizmo.0.1 1 # for the foo project
aenbr -p gizmo.0.1 2 # for the bar project
aenbr -p gizmo.0.1 3 # for the baz project

Now, the guys on thefoo project set their
AEGIS_PROJECT environment variable to to
gizmo.0.1.1, the bar guys usegizmo.0.1.2, and
bazusesgizmo.0.1.3. From the developer’s point
of view they are separate projects.From one level
up, though, they are just part of a bigger project.

It helps if you design and implement the build
system first. You do this as a change set on the
common parent branch. Once it is completed
each branch can inherit it from the common par-
ent. Thismakes integration easier, when it comes
time to integrate the sub-projects together.

9.5.2. Incremental Integration

It is very common that not all of the sub-projects
will be ready to be integrated at the same time.
This is the normal situation with Aegis branching,
and is handled cleanly and simply.

In Aegis each branch is literally a change, all the
way down into the internal data structures.Just as
each change gets its own development directory,
each branch gets its own baseline. Just as a devel-
opment directory inherits everything its doesn’t
have from the baseline, so branches inherit every-
thing theydon’t hav efrom their parent branch (or
ultimately from the trunk). Just as you incremen-
tally integrate changes into a branch, you incre-
mentally integrate branches into their parent.

The branches only influence each other when they
are integrated, just as changes only influence each
other when they are integrated.

There are times when a branch being integrated
into its parent is found to be inadequate.Aegis
provides a simple mechanism to “bounce” a
branch integration. Recall that, for Aegis,
branches are the same as changes. Just as you

Peter Miller (bl/lib/en/user-guide/c9.1.so) Page 101

User Guide Aegis

“develop end” a change (seeaede(1) for more
information) you alsoaedea branch when devel-
opment on it is completed.

Once a branch has develop-end (stops being an
activebranch), it is reviewed as a normal change,
and integrated as a normal change.If integration
failed, it returns to “being developed” and
becomes an active branch once again, until the
nextaede. As you can see, it is as easy to bounce
a branch integration as it is to bounce a change
integration.

An unsuccessful branch integration leaves the
repository unchanged, just as an unsuccessful
change integration leaves it unchanged.

9.5.3. Super-Project Branching

In many real-world situations it is very important
to be able to branch at any point in the past his-
tory of the super-project to fix (integration spe-
cific) bugs or to customize more the older states
of the super-project.

You can create a branch at any time, on any active
branch or active branch ancestor. You can popu-
late that branch with historical versions (from any
other branch, actually, not just the ancestral line).
The method is a little fussy − you can’t aecpinto
a branch directly, you need to do this via a change
to that branch.Files not changed by a change on
a branch are inherited from the current (i.e.active)
state of the parent branch.See the section on
Insulation, above.

9.5.4. Super-Project Testing

Many folks see Aegis’ testing features as useful
for unit testing individual files or change sets.
For large projects, it is common that a specific
test tool will be written. However, even large
scale integration testing is possible using Aegis.

You can change the test command from being a
shell script to being anything to you want - see the
test_commandfield in aepconf(5). Orrun the test
tool from the shell script. If the integration tests
can be automated, it makes sense to preserve
them in the repository − they are some of the most
valuable regression tests for developers, because
they describe correct behavior outside the “box”
the developer usually works in.

9.5.5. TheNext Cycle

Once you have a fully-integrated product, what
happens on the next cycle? Well, first you may
want to finish gizmo.0.1 and integrate it into

gizmo.0, and thenaenbr -p gizmo.0 2

Then what? Same deal as before, but anything
not changed in one of the sub-project branches
gets inherited from the ancestor.

aenbr -p gizmo.0.2 1 # for the foo project
aenbr -p gizmo.0.2 2 # for the bar project
aenbr -p gizmo.0.2 3 # for the baz project

Most folks find doing the whole mega-project-
build every time tiresome − so don’t. Temporar-
ily (via a change set) hack the build configuration
to build only the bit you want − obviously a dif-
ferent hack on each sub-project’s branch. Just
remember to un-hack it (via another change set)
before you integrate the sub-project.

9.5.6. BugFixing

Theaeclone(1) command lets you clone a change
set from one branch to another. So if you have a
bug fix that needs to be done on each active
branch you can clone it (once you have it fixed
the first time). You still have to build review and
integraten times (branches often differ non-triv-
ially). Providing it isn’t already in use, you can
ev en ask for the same change number on each
branch − handy for syncing with an external bug
tracking system.

Alternatively, fix bugs in the common ancestor,
and the sub-projects will inherit the fix the next
time they integrate something on their branch
(assuming they aren’t insulated against it).

9.6. Conflict Resolution

A dev elopment directory becomes out of date,
compared to the project, when another change is
integrated which has a file in common. This situ-
ation is detected automatically byaede(1) and
you resolve it using aed(1), usually with some-
thing like the --merge-only option. Additionally,
you can see if you have an out-of-date file from
the change files listing, because it will show you
the current baseline version in parentheses if you
are out-of-date.

Aegis implements branches as very long changes,
with sub-changes.A side effect of this is that a
branch can become out-of-date in the same way
that a development director becomes out of date.
When it comes time toaede(1) the branch, you
will be told if there are any out-of-date files.
Additionally, theproject files listing will show out
of date files in exactly the same way that the
change file listing does.

Page 102 (bl/lib/en/user-guide/c9.2.so) Peter Miller

Aegis UserGuide

9.6.1. Cross Branch Merge

However, unlike a simple change, if you attempt
to use theaed --merge-only command in the
branch baseline, you will get an error message!
How, then, do you resolve the apparent impasse?

The aed(1) command has a number of options
designed for just this purpose.

• The --branch option may be used to specify
another branch of the same project, as a source
of the file to be differenced against. Thisis
almost what you need.

• The --grandparentoption is a special case of
the --branch option, and it means the parent
branch of project.

• The --trunk option is also a special case of the
--branch option, and it means the base branch
from which the entire branch tree springs.

By creating a new change on the out-of-date
branch, and copying in the out-of-date files, you
have almost everything required.All that is nec-
essary is to perform a cross-branch merge against
the project grandparent, and the necessary merg-
ing will be performed. In addition Aegis will
remember that it was a cross-branch merge, and
once aeipasscompletes successfully, the branch
will be up-to-date once more.

Create a new change on the out-of-date
branch

Use a simpleaecpcommand to copy the out-
of-date files. (Do not use any --branch or
--deltaoptions.)

Use the “aed --merge-only --grandparent”
command to perform the merge.

At this point, if you use the “ael cf” com-
mand, you will notice that this file is tagged in
the listing with the new branch edit origin, to
be used duringaeipass. If it i sn’t, you have
made a mistake.

As usual, use your favourite editor to check
the merge results, and resolve any conflicts.

Build and test as usual.

Complete the change as usual.

Onceaeipassis successful, the branch will be
up-to-date (for the files in the change).

9.6.2. Insulation

One of the stated benefits of using a branch is the
insulating effects which branches can provide.
However, when you have multiple simultaneous
active branches, that insulation will inevitably

lead to out-of-date branch files. Now that how to
merge them has been described,whenshould you
merge?

In a simple change’s dev elopment directory, there
are times when anaeipasswill result in all devel-
opers needing to recompile.Depending on what
fi les you are working on, it may be that you need
to merge some of your change files immediately,
or aecp an earlier version of the files which
changed in the project.

Branches can also suffer from exactly the same
problems, and are mended by exactly the same
alternatives.

9.6.2.1. BranchInsulated Against Project

If you created a branch to insulate the work being
done on the branch from other activities in the
project, it follows that when such build problems
occurred, you would use an “aecp -delta” com-
mand to continue insulating.

This action defers the labour of merging until
towards the end of the branch development, some-
times with a quite visible schedule impact.

9.6.2.2. Project Insulated Against Branch

If you created a branch to insulate the project
from work being done in the branch, it follows
that you would do a cross branch immediately.

This action amortizes the labour of merging
across the life of the branch, often with a number
of small delays and less schedule impact.

9.6.2.3. Mix’n’ Match

Of course, we usually have both these motives,
and some more besides, so the answer is usually
“it depends”.

9.7. EndingA Branch

“OK, I give up. I do not understand the ending of
branches.”

Usually, you end development of a branch the
same way you end development of a simple
change. Inthis example, branchexample.1.42
will be ended:

% aede -p example 1 -c 42
aegis: project "example.1": change
42: file " fubar" in t he baseline
has changed since the last ’aegis
-DIFFerence’ command, you need to
do a merge
%

Oops. Somethingwent wrong. Don’t panic!

Peter Miller (bl/lib/en/user-guide/c9.3.so) Page 103

User Guide Aegis

I’m going to assume, for the purposes of explana-
tion, that there have been changes in one of the
ancestor branches, and thus require a merge, just
like file fubar, above.

You need to bring filefubarup-to-date. How?
You do it in a change set, like everything else.

At his point you need to do 5 things: (1) create a
new change on example.1.42, (2) copyfubar into
it, (3) mergefubarwith branch "example.1" (4)
end development of the change and integrate it,
and (5) now you can end example.1.42

The -GrandParent option is a special case of the
-BRanch option.You are actually doing a cross-
branch merge, just up-and-down rather than side-
ways.

% aem -gp fubar
%

And manually fix any conflicts... naturally.

At this point, have a look at the file listing, it will
show you something you have nev er seen before -
it will show you what it isgoing toset the
branch’s edit_number_origin to for each file, at
aeipass.

% ael cf
Type Action Edit File Name
------ ------ ------- -----------
source modify 1.3 fubar

{cross 1.2}

Now finish the change as usual...aeb, aed, aede,
aerpass, aeib, ..., aeipassnothing special here.

One small tip: merge the files one at a time. It
makes keeping track of where you are up to much
easier.

Now you can end development of the branch,
because all of the files are up-to-date.

In some cases, Aegis has detected a logical con-
flict where you, the human, know there is none.
Remember that theaemcommand saves the old
version of the file with a,B suffix (‘B’ for
backup). Ifyou have a file like this, just use

% mv fubar,B fubar
%

to discard everything from the ancestor branch,
and use the current branch.

Page 104 (bl/lib/en/user-guide/c6.0.so) Peter Miller

Aegis UserGuide

10. Tips and Traps

This chapter contains hints for how to use the
aegis program more efficiently and documents a
number of pitfalls you may encounter.

This chapter is at present very "ad hoc" with no
particular ordering.Fortunately, it is, as yet,
rather small. The final size of this chapter is
expected to be quite large.

10.1. RenamingInclude Files

Renaming include files can be a disaster, either
finding all of the clients, or making sure the new
copy is used rather than the old copy still in the
baseline.

Aegis provides some assistance. When the
aemv(1) command is used, a file in the develop-
ment directory is created in theold location, filled
with garbage. Compileswill fail very diagnosti-
cally, and you can change the reference in the
source file, probably afteraecp(1)ing it first.

If you are moving an include file from one direc-
tory to another, but leaving the basename
unchanged, create a link20 between the new and
old names, but only in the development directory
(i.e. replacing the "garbage" file aegis created for
you). Createthe link afteraemv(1) has suc-
ceeded. Thisinsulates you from a number of
nasty Catch-22 situations in writing the depen-
dency maintenance tool’s rules file.

10.2. SymbolicLinks

If you are on a flavor of UNIX which has symbolic
links, it is often useful to create a symbolic link
from the development directory to the baseline.
This can make browsing the baseline very simple.

Assuming that the project and change defaults are
appropriate, the following command

ln -s ‘aegis -cd -bl‘ bl

is all that is required to create a symbolic link
calledbl pointing to the baseline. Note that the
aecdalias is inappropriate in this case.

This can be done automatically for every change,
by placing the line

develop_begin_command =
"ln -s $baseline bl";

into the project configuration file.

20 A hard link uses fewer disk blocks.Symbolic
links survive the subject file being deleted and
recreated.

10.3. UserSetup

There are a number of things which users of aegis
can do to make it more useful, or more user
friendly. This section describes just a few of
them.

10.3.1. The.cshrc or .profile files

The aliases for the various user commands used
throughout this manual are obtained by appending
a line of the form

. / usr/local/share/aegis/profile

to the.profile fi le in the user’s home directory, if
they use thesh(1) shell or thebash(1) shell.

If the user uses thecsh(1) shell, append a line of
the form

source /usr/local/share/aegis/cshrc

to the.cshrcfi le in the user’s home directory.

These days, many systems also provide an
/etc/profile.ddirectory, which has symbolic links
to the start-up scripts for various packages. These
are run automatically for all users. If your system
has such a thing, arrange for symbolic links

ln -s /usr/local/share/aegis/profile \
/etc/profile.d/aegis.sh

ln -s /usr/local/share/aegis/cshrc \
/etc/profile.d/aegis.csh

and you will not need to edit every user’s.cshrc
or .profile fi le.

10.3.2. TheAEGIS_PATH environment vari-
able

If users wish to use aegis for their own projects, in
addition to the "system" projects, the
AEGIS_PATH environment variable forms a colon
separated search path of aegis "library" directo-
ries. The/usr/local/lib/aegisdirectory is always
implicitly added to this list.

The user should not create this library directory,
but let aegis do this for itself (otherwise you will
get an error message).

TheAEGIS_PATH environment variable should
be set in the.cshrcor .profile fi les in the user’s
home directory. Typical setting is

setenv AEGIS_PATH ˜/lib/aegis

and this is the default used in the
/usr/local/share/aegis/cshrcfi le.

Peter Miller (bl/lib/en/user-guide/c6.0.so) Page 105

User Guide Aegis

10.3.3. The.aegisrc file

The.aegisrcfi le in the user’s home directory con-
tains a number of useful fields. Seeaeuconf(5)
for more information.

10.3.4. Thedefaulting mechanism

In order for you to specify the minimum possible
information on the command line, aegis has been
designed to work most of it out itself.

The default project is the project which you are
working on changes for, if there is only one, oth-
erwise it is gleaned from the.aegisrcfi le. The
command line overrides any default.

The default change is the one you are working on
within the (default or specified) project, if there is
only one. The command line overrides any
default.

10.4. TheProject Owner

For the greatest protection from accidental
change, it is best if the project is owned by aUNIX

account which is none of the staff. Thisaccount
is often named the same as the project, or some-
times there is a single umbrella account for all
projects.

When an aegis project is created, the owner is the
user creating the project, and the group is the
user’s default group. The creating user is
installed as the project’s first administrator.

A new project administrator should be created -
an actual user account. TheUNIX password
should then be disabled on the project account - it
will never be necessary to use it again.21

The user nominated as project administrator many
then assign all of the other staff roles. Aegis takes
care of ensuring that the baseline is owned by the
project account, not any of the other staff, while
development directories always belong to the
developer (but the group will always be the
project group, irrespective of the developer’s
default group).

All of the staff working on a project should be
members of the project’s group, to be able to
browse the baseline, for reviewers to be able to
review changes. Thisuse ofUNIX groups means
that projects may be as secure or open as desired.

21 Unless bugs in aegis corrupt the database, in
which case repairs can be accomplished as the
project account using a text editor.

10.5. USENETPublication Standards

If you are writing software to publish on
USENET, a number of the source newsgroups
have publication standards. This section
describes ways of generating the following files,
required by many of the newsgroups’ moderators:

MANIFEST List of files in the distribu-
tion.

Makefile How to build the distribu-
tion.

CHANGES What happened for this
distribution.

patchlevel.h An identification of this
distribution.

Each of these files may be generated from infor-
mation known to aegis, with the aid of some fairly
simple shell scripts.

10.5.1. CHANGES

Write this section.

Look in theaux/CHANGES.shfi le included in the
aegis distribution for an example of one way to do
this.

10.5.2. MANIFEST

Write this section.

Look in theaux/MANIFEST.shandaux/MANI-
FEST.awkfi les included in the aegis distribution
for an example of one way to do this.

10.5.3. Makefile

Write this section.

Look in theaux/Makefile.shandaux/Makefile.awk
fi les included in the aegis distribution for an
example of one way to do this.

10.5.4. patchlevel.h

Write this section.

Look in theaux/Howto.cookfi le included in the
aegis distribution for an example of one way to do
this.

10.5.5. BuildingPatch Files

Thepatchprogram by Larry Wall is one of the
enduring marvels of USENET. This section
describes how to build input files for this miracle
program.

Write this section.

Look in theaux/patches.shfi le included in the
aegis distribution for an example of one way to do

Page 106 (bl/lib/en/user-guide/c6.0.so) Peter Miller

Aegis UserGuide

this.

Peter Miller (bl/lib/en/user-guide/c6.1.so) Page 107

User Guide Aegis

10.6. Heterogeneous Development

The aegis program has support for heterogeneous
development. Itwill enforce that each change be
built and tested on each of a list of architectures.
It determines which architecture it is currently
executing on by using theuname(2) system call.

Theuname(2) system call can yield uneven
results, depending on the operating systems ven-
dor’s interpretation of what it should return22. To
cope with this, each required architecture for a
project is specified as a name and a pattern.

The name is used by aegis internally, and is also
available in the${ARCHitecture}substitution (see
aesub(5) for more information).

The patterns are simple shell file name patterns
(seesh(1) for more information) matched against
the output of theuname(2) system call.

The result ofuname(2) has four fields of interest:
sysname, release, versionandmachine. These are
stitched together with hyphens to form an archi-
tecturevariant to be matched by the pattern.

For example, a system the author commonly uses
is "SunOS-4.1.3-8-sun4m" which matches the
"SunOS-4.1*-*-sun4*" pattern.A solaris system,
a very different beast, matches the
"SunOS-5.*-*-sun4*" pattern. Sun’s 386 version
of Solaris matches the "SunOS-5.*-*-i86pc" pat-
tern. Aconvex system matches the "Con-
vexOS-*-10.*-convex" pattern.

10.6.1. Project aegis.confFile

To require a project to build and test on each of
these architectures, thearchitecturefield of the
projectaegis.conffi le is set. Seeaepconf(5) for
more details on this file. Theabove examples of
architectures could be represented as

architecture =
[

{
name = "sun4";
pattern = "SunOS-4.1*-*-sun4*";

},
{

name = "sun5";
pattern = "SunOS-5.*-*-sun4*";

},

22 For example, SCO 3.2 returns the nodename
in the sysname field, when it should place "SCO"
there; Convex and Pyramid scramble it even worse.

{
name = "sun5pc";
pattern = "SunOS-5.*-*-i86pc";

},
{

name = "convex";
pattern = "ConvexOS-*-10.*-*";

}
];

This would require that all changes build and test
on each of the "sun4", "sun5", "sun5pc" and "con-
vex" architectures.

It is also possible to haveoptionalarchitectures.
This may be used to recognise an environment,
but not mandate that it be built every time.

{
name = "solaris-8-sparc";
pattern = "SunOS-5.8*-*-sun4*";
mode = optional;

},

However, once an architecture name appears in a
change’s architecture list, it is mandatory for that
change.

If the architecturefield does not appear in the
projectaegis.conffi le, it defaults to

architecture =
[

{
name = "unspecified";
pattern = "*";

}
];

Setting the architectures is usually done as part of
the first change of a project, but it also may be
done to existing projects. This information is
kept in the projectaegis.conffi le, rather than as a
project attribute, because it requires that the DMT
configuration file and the tests have correspond-
ing details (see below).

The lib/config.example/architecturefi le in
the Aegis distribution contains many architecture
variations, so that you may readily insert them
into your project configuration file.

10.6.2. ChangeAttribute

Thearchitectureattribute is inherited by each new
change. Aproject administrator may subse-
quently edit the change attributes to grant exemp-
tions for specific architectures. Seeaeca(1) for
how to do this.

A build must be successfully performed on each
of the target architectures. Similarly, the tests
must be performed successfully on each. These
requirements are because there is often

Page 108 (bl/lib/en/user-guide/c6.1.so) Peter Miller

Aegis UserGuide

conditional code present to cope with the vagaries
of each architecture, and this needs to be com-
piled and tested in each case.

This multiple build and test requirement includes
both development and integration states of each
change.

10.6.3. Network Files

This method of heterogeneous development
assumes that the baseline and development direc-
tories are available as the same pathname in all
target architectures.With software such as NFS,
this does not present a great problem, however
NFS locking must also work.

There is also an assumption that all the hosts
remotely mounting NFS file systems will agree
on the time, because aegis uses time stamps to
record that various tasks have been performed.
Software such astimed(8) is required23.

10.6.4. DMTImplications

This method of heterogeneous development
assumes that the baseline will have a copy of all
object files for all target architecturessimultane-
ously.

This means that the configuration file for the
DMT will need to distinguish all the variations of
the object files in some way. The easiest method
is to have a separate object tree for each architec-
ture24. To facilitate this, there is an${ARCHitec-
ture} substitution available, which may then be
passed to the DMT using thebuild_command
field of the projectaegis.conffi le.

The architecture name used by aegis needs to be
used by the DMT, so that both aegis and the DMT
can agree on which architecture is currently tar-
geted.

10.6.4.1. CookExample

As and example of how to do this, the cook
recipes from the DMT chapter are modified as
appropriate. First,thebuild_commandfield of the
projectaegis.conffi le is changed to include the
${ARCHitecture}substitution:

23 Some sites manage by runningrdate(8) from
cron(8) every 15 minutes.

24 A tree the same shape as the source tree makes
navigation easier, and users need not think of file
names unique across all directories.

build_command =
"cook -b ${s Howto.cook} \
project=$p change=$c \
version=$v arch=’$arch’ -nl";

Second, the C recipe must be changed to include
the architecture in the path of the result:

[arch]/%.o: %.c: [collect c_incl
-eia [prepost "-I" ""
[search_list]] [resolve %.c]]

{
if [not [exists [arch]]] then

mkdir [arch]
set clearstat;

if [exists [target]] then
rm [target]

set clearstat;
[cc] [cc_flags] [prepost "-I"

"" [search_list]] -c
[resolve %.c];

mv %.o [target];
}

Third, the link recipe must be changed to include
the architecture in the name of the result:

[arch]/example: [object_files]
{

if [not [exists [arch]]] then
mkdir [arch]

set clearstat;
if [exists [target]] then

rm [target]
set clearstat;

[cc] -o [target] [resolve
[object_files]] -ly -ll;

}

The method used to determine the
object_files variable is the same as before,
but the object file names now include the architec-
ture:

object_files =
[fromto %.y [arch]/%.o

[match_mask %.y [source_files]]]
[fromto %.l [arch]/%.o

[match_mask %.l [source_files]]]
[fromto %.c [arch]/%.o

[match_mask %.c [source_files]]]
;

Note that the form of these recipes precludes per-
forming a build in each target architecture simul-
taneously, because intermediate files in the
recipes may clash. However, aegis prevents
simultaneous build, for this and other reasons.

10.6.5. Test Implications

Tests will need to know in which directory the rel-
evant binary files reside. Thetest_commandfield
of the projectaegis.conffi le may be changed from

Peter Miller (bl/lib/en/user-guide/c6.1.so) Page 109

User Guide Aegis

the default

test_command =
"$shell $file_name";

to pass the architecture name to the test

test_command =
"$shell $file_name $arch";

This will make the architecture name available as
$1 within the shell script.Tests should fail ele-
gantly when the architecture name is not given, or
should assume a sensible default.

10.6.6. Cross Compiling

If you are cross compiling to a number of differ-
ent target architectures, you would not use aegis’
heterogeneous development support, since it
depends on theuname(2) system call, which
would tell it nothing useful when cross compiling.
In this case, simply write the DMT configuration
fi le to cross compile to all architectures in every
build.

10.6.7. FileVersion by Architecture

There is no intention of ever providing the facility
where a project source file may have different ver-
sions depending on the architecture, but all of
these versions overload the same file name25.

The same effect may be achieved by naming files
by architecture, and using the DMT to compile
and link those files in the appropriate architecture.

This has the advantage of making it clear that sev-
eral variations of a file exist, one for each archi-
tecture, rather than hiding several related but inde-
pendent source files behind the one file name.

10.7. Reminders

This section documents some scripts available for
reminding users of changes which require their
attention. Thesescripts are installed into the
/usr/local/share/aegis/reminddirectory, and may
be run bycron(8) at appropriate intervals. You
will almost certainly want to customize them for
your site.

10.7.1. Awaiting Development

The/usr/local/share/aegis/remind/awt_dvlp.sh
script takes a project name as argument. Itis
placed in the project leader’s per-user crontab. It
is suggested that this script be run weekly, at
8AM on Monday. This script will send all

25 Some other SCM tools provide a repository
with this facility.

developers of the named project email if there are
any changes in theawaiting developmentstate in
the named project. No mail is sent if there are no
changes outstanding.

10.7.2. BeingDeveloped

The/usr/local/share/aegis/remind/bng_dvlpd.sh
script takes no arguments. Itis placed in each
user’s per-user crontab. It is suggested that this
script be run weekly, at 8AM on Monday. This
script takes no arguments, and sends email to the
user if they hav eany changes in thebeing devel-
opedor being integratedstates. Nomail is sent if
there are no changes outstanding.

10.7.3. BeingReviewed

The/usr/local/share/aegis/remind/bng_rvwd.sh
script takes a project name as argument. Itis
placed in the project leader’s per-user crontab. It
is suggested that this script be run daily at 8AM.
This script will send all reviewers of the named
project email if there are any changes in thebeing
re viewedstate in the named project. No mail is
sent if there are no changes outstanding.

10.7.4. Awaiting Integration

The/usr/local/share/aegis/remind/awt_intgrtn.sh
script takes a project name as argument. Itis
placed in the project leader’s per-user crontab. It
is suggested that this script be run daily at 8AM.
This script will send all integrators of the named
project email if there are any changes in the
awaiting integrationstate in the named project.
No mail is sent if there are no changes outstand-
ing.

Page 110 (bl/lib/en/user-guide/c10.0.so) Peter Miller

Aegis UserGuide

11. GeographicallyDistributed Development

This chapter describes various methods of collab-
oratively developing software using Aegis, where
the collaborating sites are separated by adminis-
trative domains or even large physical distances.

While many Open Source projects on the Internet
typify such development, this chapter will also
describe techniques suitable for commercial
enterprises who do not wish to compromise their
intellectual property.

11.1. Introduction

The core of the distribution method is the
aedist(1) command. In its simplest form, the
command

aedist -send | aedist -receive

will clone a change set locally. This may appear
less than useful (after all, theaeclone(1) com-
mand already exists) until you consider situations
such as

aedist -send | e-mail | a edist -receive

wheree-mailrepresents the sending, transport and
receiving of e-mail. In this example, the change
set would be reproduced on the e-mail recipient’s
system, rather than locally. Similar mechanisms
are also possible for web distribution.

11.1.1. RiskReduction

Receiving change sets in the mail, however,
comes with a number of risks:

• You can’t just commit it to your repository,
because it may not even compile.

• Even if it does compile, you want to run some
tests on it first, to make sure it is working and
doesn’t break anything.

• Finally, you would always check it out, to
make sure it was appropriate, and didn’t do
more subtle damage to the source.

While these are normal concerns for distributing
source over the Internet, and also internally within
companies, they are the heart of the process
employed by Aegis. All of these checks and bal-
ances are already present. The receive side sim-
ply creates a normal Aegis change, and applies
the normal Aegis process to it.

• The change set format is unpacked into a pri-
vate work area, not directly into the reposi-
tory. This is a normal Aegis function.

• The change set is then confirmed to build
against the repository. All implications

flowing from the change are exercised. Build
inconsistencies will flag the change for atten-
tion by a human, and the change set will not
be committed to the repository. This is a nor-
mal Aegis function.

• The change set is tested. If it came accompa-
nied by tests, these are run. Also, relevant
tests fromthe repository are run.Test incon-
sistencies will flag the change for attention by
a human, and the change set will not be com-
mitted to the repository. This is a normal
Aegis function.

• Once the change set satisfies these require-
ments, it must still be reviewed by a human
before being committed, to validate the
change set for suitability and completeness.
This is a normal Aegis function.

11.1.2. Whatto Send

While there are many risks involved in receiving
change sets, there also problems in figuring out
what to send.

At the core of Aegis’ design is a transaction.
Think of the source files as rows in a database ta-
ble, and each change-set as a transaction against
that table. The build step represents maintaining
referential integrity of the database, but also rep-
resents an input validation step, as does the
review. And like databases, the transactions are
all-or-nothing affairs, it is not possible to commit
“half” a transaction.

As you can see, Aegis changes are already ele-
gantly validated, recorded and tracked, and ide-
ally suited to being packaged and sent to remote
repositories.

11.1.3. Methodsand Topologies

In distributed systems such as described in this
chapter, there are two clear methods of distribu-
tion:

• The “push” method has the change set producer
automatically send the change-set to a regis-
tered list of interested consumers. This is sup-
ported by Aegis andaedist.

• The “pull” method has the change set producer
make the change sets available for interested
consumers to come and collect. This is sup-
ported by Aegis andaedist.

These are two ends of a continuum, and it is pos-
sible and common for a mix-and-match approach
to be taken.

Peter Miller (bl/lib/en/user-guide/c10.0.so) Page 111

User Guide Aegis

There are also many ways of arranging how dis-
tribution is accomplished, and many of the distri-
bution arrangements (commonly called topolo-
gies, when you draw the graphs) are supported by
Aegis andaedist:

• The star topology has a central master reposi-
tory, surrounded by contributing satellite repos-
itories. Thesatellites are almost always “push”
model, however the central master could be
either “push” or “pull” model.

• The snowflake topology is like a hierarchical
star topology, with contributors feeding staging
posts, which eventually feed the master reposi-
tory. Common for large Open Source Internet
projects. Tow ards the master repository is
almost always “push” model, and away from
the master is almost always “pull” model.

• The network topology is your basic anarchic
autonomous collective, with change sets flying
about peer-to-peer with no particular structure.
Often done as a “push” model through an e-
mail mailing list.

All of these topologies, and any mixture you can
dream up, are supported by Aegis andaedist. The
choice of the right topology depends on your
project and your team.

11.1.4. TheRest of this Chapter

Aegis is the ideal medium for hosting distributed
projects, for all the above reasons, and the rest of
this chapter describes a number of different ways
of doing this:

The second section will describe how to per-
form these actions manually, both send and
receive, as this demonstrates the method
efficiently, and represents a majority of the
use made of the mechanism.

The third section will show how to automate
e-mail distribution and receipt. Automated e-
mail distribution is probably the next most
common use.

The fourth section will show how to configure
distribution and receipt using World Wide
Web servers and browsers.

The fifth section deals with security issues,
such as validating messages and coping with
duplicate storms.

11.2. ManualOperation

This section describes how to useaedistmanu-
ally, in order to send and receive change sets.

11.2.1. ManualSend

In order to send a change set to another site, it
must be packaged in a form which captures all of
the change’s attributes and the contents of the
change’s files. Thispackage must be compressed
and encoded in a form which will survive the var-
ious mail transport agents it must pass through,
and then given to the local mail transport agent.
This is done by a single command

% aedist -send -c number | \
mail joe.blow@example.com

%

All of the usual Aegis command line options are
available, so you could specify the project on the
command line if you needed to.

This command will send the sources from the
development directory, if the change is not yet
completed. Thisis useful for collaboration
between developers, but it isn’t reviewed and inte-
grated, so beware.

It is more usual to send a change which has been
completed. Inthis case the version of the file
which was committed is sent. If necessary, the
history files will be consulted to reconstruct this
information. Seethe “Automatic Send” section,
below, for more discussion of this.

There are many options for customizing the e-
mail message sent tojoe.blow@exam-
ple.com , seeaedist(1) for more information.

11.2.2. SendingBaselines

In order to send the entire contents of the reposi-
tory to someone, you use a very similar com-
mand:

% aedist -send -baseline | \
mail joe.blow@example.com

%

This can be a very large change set, because it is
all files of the project.

11.2.3. SendingBranches

There are times when remote developers are not
interested in a blow-by-blow update of your
repository. Instead they want to have updates
from time to time. In order to send them the cur-
rent state of your active dev elopment branch, in
this example “example.4.2”, you would use a
command of the form

Page 112 (bl/lib/en/user-guide/c10.1.so) Peter Miller

Aegis UserGuide

% aedist -send -p example.4 -c 2 | \
mail joe.blow@example.com

%

Notice how the correspondence between branches
and change sets is exploited. Thebaseline of a
branch is the development directory of the “super
change” is represents.

Branch change sets like this are smaller than
whole baselines, because they include only the
fi les altered by this branch, rather then the state of
ev ery file in the project.

11.2.4. ManualReceive

The simplest form of receiving a change set is to
save it from your e-mail program into a file, and
then

% aedist -receive -file filename
...lots of information...
%

wherefilenameis where you saved the e-mail
message. Ifyour e-mail program is able to write
to a pipe, you can use a simpler form. This exam-
ple uses the Rand Mail Handler’sshow(1) com-
mand:

% show | aedist -receive
...lots of information...
%

Each of these examples assumes that you have
used the same project name locally as that of the
sender (it’s stored in the package). If this isn’t the
case, you will need to use the−project option
to tell aedistwhich project to apply the change to.

The actions performed byaediston receive are
not quite a mirror of what it does on send. In par-
ticular, send usually extracts its information from
the repository, but receivedoes notput the
change set directly into the repository.

On receipt of a change set,aedistcreates a new
change with its own development directory, and
unpacks the change set into it, in much the same
way as a change would normally be performed by
a dev eloper. (Indeed, the receiver must be an
authorized developer.)

Once the change is unpacked, it goes through the
usual development cycle of build, difference and
test. Ifany portion of this fails,aedistwill stop
with a suitable error message. If all goes well,
development of the change will end, and it will be
left in thebeing reviewedstate.

At this point, a local reviewer must examine the
change, and it proceeds through the change

integration process as normal.

If there is a problem with the change, it can be
dealt with as you would with any other defective
change − by developing it some more. Or you
can email the sender telling them the problem and
useaedbu(1) andaencu(1) to entirely discard the
change.

11.2.5. GettingStarted

In order to receive a change, you must have a
project to receive it into. Also,changes tend to be
thedifferencebetween an existing repository and
what it is to become.You need some way to get
the starting point of the differences before you
can apply any differences. Thissection describes
one way of doing this.

You start by creating a normal Aegis project in
the usual way. That is covered earlier in this User
Guide. Ithelps greatly if you give your local
project exactly the same name as the remote
project. Itdoesn’t need the same pathname for
the project directory, just the same project name.

Once you have this project created, request the
remote repository send you a “baseline” change,
as described above. Once you have received this,
and it is integrated successfully, you are ready to
receive and apply change sets. This is an inher-
ently “pull” activity, as the source may never hav e
heard of you before. The initial baseline may
arrive by e-mail, or floppy disk, or you may
retrieve it from the web, it all depends how the
project is being managed.

You will be warned about "potential trojan horse"
fi les in the baseline change set. This is normal,
because you are receiving all project configura-
tions file, build files and test files. All of these
contain executable commandsthat will be exe-
cuted. Cav eat emptor. Make sure you trust the
source.

11.3. Sneaker Net

Another common method of transporting data,
sometimes a quite large amount of it, is to write it
onto transportable media and carry it.

To write a change set onto a floppy, you would
use commands such as

% mount /mnt/floppy
% aedist -send -no-base64 \

-o /mnt/floppy/ change.set
% umount /mnt/floppy
%

The above command assumes the floppy is pre-

Peter Miller (bl/lib/en/user-guide/c10.1.so) Page 113

User Guide Aegis

formatted, and that there is a user-permitting line
in the/etc/fstabfi le, as is common for many
Linux distributions. Thechange.setcan be any
fi lename you like, but is usually project-name and
change-number related.

It takes a very sizable change set to fail to fit on a
1.44MB floppy, because they are compressed
(and change sets exceeding 8MB of source are
rare, even for huge projects). The-no-base64
option is used to avoid the MIME base 64 encod-
ing, which is necessary for e-mail, not not neces-
sary in this case. The receive side will automati-
cally figure out there is no MIME base 64 encod-
ing.

Reading the change set is just as simple, as it
closely follows the other commands for receiving
commands sets.

% mount /mnt/floppy
% aedist -rec -f /mnt/floppy/ change.set
...lots of output...
% umount /mnt/floppy
%

This technique will work for any of the disks
available these days including floppies, Zip, Jaz,
etc.

11.4. Automatic Operation

This section describes how to useaedistto auto-
matically send change sets via e-mail.

11.4.1. Sending

Change sets can be sent automatically when a
change passes integration. You do this by setting
the integrate_pass_notify_commandfield of the
project attributes.

In this example, the “example” project sends all
integrations to all the addresses on theexam-
ple-developers mailing list. (The mailing
list is maintained outside of Aegis,e.g.by Major-
domo.) Therelevant attribute (edited by using the
aepa(1) command) looks like this:

integrate_pass_notify_command =
"aedist -p $project -c $change | \
mail example-users";

Please note that project attributes are inherited by
branches when they are created. If you don’t
want all branches to broadcast all changes, you
need to remember to clear this project attribute
from the branchonce the branch has been created.
Alternatively, use the$version substitution to
decide who to send the change to.

11.4.2. Receiving

write this section

You need to set up an e-mail alias, with a wrapper
around it - you probablydon’t want "daemon" as
a registered developer.

While aedist(1) makes every attempt to spot
potential trojan attacks, you really,really want
PGP validation (or similar industrial strength digi-
tal signatures) before you accept this kind of
input.

11.5. World Wide Web

This section describes how to useaeget(1) and
aedist(1) to transport change sets using the World
Wide Web. This requires configuration of the
web server to package and send the change sets,
and configuration of the browser to receive and
unpack the change sets.You can also automati-
cally track a remote site, efficiently downloading
and applying new change sets as they appear.

11.5.1. Server

Aegis has a read-only web interface to its
database, it is a web server CGI interface. Ifyou
are running Apache, or similar, all you have to do
is copy (or symlink, if you have symlinks
enabled) the/usr/local/bin/aeget fi le into the web
server’scgi-bindirectory. For example, the
default Apache install would need the following
command:

ln -s /usr/local/bin/aeget /var/www/cgi-bin/aeget

11.5.2. Browser

You need to set the appropriate mailcap entry, so
thatapplication/aegis-change-set is
handled byaedist --receive.

Edit the/etc/mailcapfi le, and add the lines

Aegis
application/aegis-change-set;/usr/local/bin/aedist -receive -f %s

You may need to restart your web browser for this
to take effect.

11.5.3. Hands-Free Tracking

Clients of sites using a web server, such as the
various developers in an open sourec project, it is
possible to automatically "replay" change sets on
the server which have not yet been incorporated at
your site.

The command

Page 114 (bl/lib/en/user-guide/c10.3.so) Peter Miller

Aegis UserGuide

aedist --replay -f name-of-web-server

will automatically download any remote change
sets not present in the local repository. It down-
loads them by using theaedist(1) command. It
uses commands of the form

aedist --receive -f url-of-change-set

to download the change sets, which have to go
through all of the usual Aegis process before
vecoming part of your local repository. This
includes code review, unless you have configured
thedevelop_end_actionfield of the project con-
figuration to begoto_awaiting_development.

If you add this command to acrontab(1) entry,
you can check to see if there are change sets to
synchronize with once a day, or however often
you set the line to run.

11.6. Security

This section deals with security issues. Security
isn’t just “keep the bad guys out”, it actually cov-
ersavailability, integrityandconfidentiality.

Av ailability:
refers to the system being available for
use by authorised users. Denial of ser-
vice and crashes are examples of bad
things in this area.

Integrity:
refers to the system being in a known
good state. Corrupted change sets and
un-buildable repositories are examples
of bad things in this area.

Confidentiality:
refers to the system being availableonly
to authorised users.For many Open
Source projects, this isn’t a large con-
cern, but for corporate users of Aegis,
non-disclosure of change-sets as they
cross the Internet is a serious require-
ment.

As you can see, a strategy of “keep the bad guys
out” is necessary, but not sufficient, to satisfy
security.

This section covers the above security issues, as
applied to the use ofaedistto move change sets
around.

11.6.1. Trojan Horses

“A Trojan horse is an apparently useful program
containing hidden functions that can exploit the
privileges of the user [running the program], with
a resulting security threat.A Trojan horse does

things that the program user did not intend26.”

In order to forestall this threat,aedistwill cease
development of the change if it detects the poten-
tial for a Trojan horse. These include...

• Changing the projectaegis.conffi le. Thisfi le
contains the build command and the difference
commands, both of which would be run before
a reviewer had a chance to confirm they were
acceptable.

• Changing any of the files named in thetro-
jan_horse_suspectfield of the project
aegis.conffi le. Thislets you cover things like
the build tool’s configuration file (e.g.the
Makefile or the cookbook), and any scripts or
code generators which would be run by the
build.

This isn’t exhaustive protection, and it depends on
keeping thetrojan horse suspectlist up-to-date.
(It accepts patterns, so it’s not too onerous.)For
better protection, you need to validate the sender
and the message.

11.6.2. PGP

PGP can be used to validate that the source of a
change set distribution is really someone you
trust.

anyone want to advise me what to put here?

11.6.3. Sorcerer’s Apprentice

In a push system, with a central master server and
a collection of contributors, all of which are using
automatic send, as described above, a potential
explosion of redundant messages is possible.Viz:

• Contributor integrates a change, which is dis-
patched to the master server.

• Maintainer integrates the change set into the
master repository.

• Master repository automatically dispatches the
change set to all of the contributors.

• Each of the contributors receives and integrates
the change, each of which are dispatched to the
master server.

• The master server is inundated with change sets
it already has.

• If these change sets were to be integrated, the
storm repeats, growing exponentially every
time it goes around the loop.

26 Summers, Rita C.,Secure Computing Threats
and Safeguards, McGraw-Hill, 1997.

Peter Miller (bl/lib/en/user-guide/c10.4.so) Page 115

User Guide Aegis

To prevent this,aedistdoes several things...

• Before the change is built, anaecpu
--unchangedis run. If there is nothing left, the
change is abandoned, because you already have
it. (This doesn’t always work, because propa-
gation delays may try tore versea subsequent
local change.)

• When a change set is sent, an RFC 822 style
header is added to the description. This
includes From and Date. When a change set is
received, a Received line is added.Too many
Received lines causes the change set to be
dropped − for a star topology the maximum is
2. (Thisdoesn’t always work, because the
description could be edited to rip it off again.)
(This doesn’t always work, because the main-
tainer may edit it in some ways before comit-
ting it, and forget to rip off (enough of) the
header.) (Thisdoesn’t always work, because
hierarchical topologies will group change sets
together.) (Thisdoesn’t always work, because
a baseline pull will group change sets together.)

• Set the description to indicate it was received
by aedist? Use this to influence the decision to
send it off again at integrate pass? How?

11.7. Patches

In the open source community, patches are com-
mon way of sharing enhancements to software.
This was particularly common before the World
Wide Web, and usenet was the more common
medium of distribution. Patches also have the
advantage of being fairly small and usually tans-
portable by email with few problems.

11.7.1. Send

If you are participating in an open source project,
and using Aegis to manage your development, the
aepatch −sendcommand may be used to con-
struct a patch to send to the other developers.

It is very similar in operation to theaedist(1)
command, however it is intended for non-Aegis-
using recipients.

To send a change to someone (a completed
change, or one in progress) simply use a com-
mand such as

% aepatch -send -c number | \
mail joe.blow@example.com

%

to send your change as a patch. Note that it will
be compressed (using GNU Zip) and encoded
(using MIME base 64), which produces small

fi les which are going to survive email transport.

11.7.2. Receive

The simplest way of receiving a patch and turn it
into a change set is to save it from your e-mail
program into a file, and then

% aepatch -receive -file filename
...lots of information...
%

wherefilenameis where you saved the e-mail
message. Ifyour e-mail program is able to write
to a pipe, you can use a simpler form. This exam-
ple uses the Rand Mail Handler’sshow(1) com-
mand:

% show | aepatch -receive
...lots of information...
%

Each of these examples assumes that you have
already set the project name, either viaaeuconf(5)
or ae_p(1), or you could use the−project option.

The actions performed byaepatchon receive are
not quite a mirror of what it does on send. In par-
ticular, send usually extracts its information from
the repository, but receivedoes notput the
change set directly into the repository.

On receipt of a change set,aepatchcreates a new
change with its own development directory,
copies the files into it, and applies the patch to the
fi les. Thereceiver must be an authorized devel-
oper.

Once the patch is applied, it goes through the
usual development cycle of build, difference and
test. Ifany portion of this fails,aepatchwill stop
with a suitable error message. If all goes well,
development of the change will end, and it will be
left in thebeing reviewedstate.

At this point, a local reviewer must examine the
change, and it proceeds through the change inte-
gration process as normal.

If there is a problem with the change, it can be
dealt with as you would with any other defective
change − by developing it some more. Or you
can email the sender telling them the problem and
useaedbu(1) andaencu(1) to entirely discard the
change.

11.7.3. Limitations

Despite a great similarity of command line opera-
tions and operation, theaepatchcommand should
not be thought of as an equivalent for theaedist
command, or a replacement for it.

Page 116 (bl/lib/en/user-guide/c10.5.so) Peter Miller

Aegis UserGuide

The information provided byaedist −sendis suf-
ficiently complete to recreate the change set at the
remote end. No information is lost. In contrast,
theaepatch −sendcommand is limited to that
information a patch file (see thepatch(1) com-
mand, from the GNU Diff utils). Thereis no
guarantee that theaepatch −sendoutput will be
given to aepatch −receive; it must work with
patch(1), and similar tools.

Conversely, there is no guarantee that the input to
aepatch −receivecame fromaepatch −send. It
can and must be able to cope with the outout of a
simplediff -r -N -c command, with no additional
information.

All this means, useaedistwherever possible. The
aepatchcommand is to simplify and streamline
communication with non-Aegis developers.

Peter Miller (bl/lib/en/user-guide/c12.0.so) Page 117

User Guide Aegis

12. Further Reading

This chapter contains information about books,
articles or web sites relevant to some aspect of
Aegis or using Aegis. Thesereferences should
not be taken as endorements.

If I’ ve missed a good reference, it isn’t personal,
but I can’t and haven’t read everything out there.
Email me the information and I’ll add it to this
chapter (no advertising, please).

12.1. Software Configuration Management

Eaton, D. (1995), Configuration Management
Frequently Asked Questions, http://www.dav-
eeaton.com/scm/CMFAQ.html

This is an essential first-stop for infor-
mation about Software Configuration
Management. Ithas an excellent book
list.

Pool, D., CM Today, http://www.cmtoday.com/
This is a configuration management por-
tal site, with news and other links.

12.2. Reviewing

Baldwin, J. (1992), An Abbreviated C++ Code
Inspection Checklist,
http://www2.ics.hawaii.edu/˜john-
son/FTR/Bib/Baldwin92.html

This web page talks about C++ code
inspections with some useful suggestions
about how to conduct (rather formal)
re views and some for C++ constructs to
watch out for.

Page 118 (bl/lib/en/user-guide/cA.0.so) Peter Miller

Aegis UserGuide

13. Appendix A: New Project Quick Reference

For those of you too impatient to read a whole
great big document about how to use the aegis
program, this appendix gives a quick look at how
to place a project under aegis.

The style here is an itemized list. It does not try
to be exhaustive. For exact details on how to use
the various aegis commands, you should see the
manual pages, ditto for the formats and contents
of some files.

Probably the quickest start of all is to copy an
already existing project. The project used in
chapter 2 is complete, assuming you use the
author’s "cook" dependency maintenance tool.
The entirety of this example may be found, if
slightly obfuscated, in the aegis source file
test/00/t0011a.shdistributed with aegis.

13.1. Create the Project

Theaenprcommand is used to create a project.
You must supply the name on the command line.
The name should be ten characters or less, six
characters or less if you want version numbers
included.

The user who creates the project is the owner of
the project, and is set as the administrator. The
default group of the user who created the project
is used as the project’s group.

You may want to have a user account which owns
the project.You must create the project as this
user, and then use theaenaandaeracommands
to add an appropriate administrator, and remove
the owning user as an administrator. After this,
the password for the owning user may be dis-
abled, because the aegis program will, at appro-
priate times, set file ownership to reflect project
ownership or execute commands on behalf of the
project ownerasthe project owner.

13.1.1. Addthe Staff

Theaendcommand is used to add developers.
Theaenrvcommand is used to add reviewers.
Theaenicommand is used to add integrators.
These commands may only be performed by a
project administrator.

You will still have to do this, even if the person
who created the project will be among these peo-
ple, or even be all of these people.

13.1.2. Project Attributes

Theaepacommand is used to change project
attributes. Theseattributes include the description

of the project, and booleans controlling whether,
for example, developers may review their own
work.

The project attributes file is described in the
aepattr(5) manual entry.

13.2. Create Change One

Theaenccommand is used to create a new
change. You will need to construct a change
attributes file with your favorite text editor before
running this command.

The change attributes file is described in the
aecattr(5) manual entry.

13.3. Develop Change One

This is the most grueling step. Indeed, the inte-
gration step will probably reveal things you
missed, and you may return to thebeing devel-
oped
state several times.

One of the people you nominated as a developer
will have to use theaedbcommand to commence
development of the first change. Theaecdcom-
mand can be used to change directory into the
just-created development directory.

Add files to the change. Theaenfcommand is
used to create new files. If you don’t useaenf
then the aegis program has no way of knowing
whether that file lying there in the development
directory is significant to the project, or just a
shopping list of the groceries you forgot to buy
yesterday.

One particular new file whichmustbe created by
this change is the project configuration file, usu-
ally calledaegis.confbut can be named something
else. Thisfi le tells Aegis what history mechanism
you wish to use, what dependency maintenance
command to use, what file difference tools to use,
and much more. Theaepconf(5) manual entry
describes this file.

If you are going to use the "cook" dependency
maintenance tool, another new file you will need
to create in this change is the "Howto.cook" file.
Some other tool will want some other rules file.

You probably have a prototype or some other
"seed" you have sort-of working. Createnew files
for each source file andthencopy the files from
wherever they are now into the development
directory.

Use theaebcommand to build the change. It will
need to build cleanly before it can advance to the

Peter Miller (bl/lib/en/user-guide/cA.0.so) Page 119

User Guide Aegis

next step.

Use theaedcommand to difference the change. It
will need to difference cleanly before it can
advance to the next step.

Use theaentcommand to add new tests to the
command. Itwill need to have tests before it can
advance to the next step.

Most existing projects don’t hav eformal tests.
These tests will form a regression test-bed, used
to make sure that future changes never compro-
mise existing functionality.

Use theaetcommand to test the change. It will
need to test cleanly before it can advance to the
next step.

Once the change builds, differences and tests
cleanly, use theaedecommand to end develop-
ment.

13.4. Review The Change

One of the people nominated as reviewers will
have to run theaerpasscommand to say that the
change passed review.

The aegis program does not mandate any particu-
lar review mechanism: you could use a single
peer to do the review, you could use a panel, you
could set the project so that developers may
review their own work effectively eliminating the
review step. Inprojects with as few as two peo-
ple, it is always beneficial for someone other than
the developer to review changes. Itis even bene-
ficial for the developer herself to review the next
day.

Should a reviewer actually want toseethe
change, theaecdcommand may be used to
change directory to the development directory of
the change. The difference files all end with a
"comma D" suffix, so the

more ‘find . -name "*,D" -print |

sort‘

command may be used to search them out and see
them. Thisis probably fairly useless for the first
change, but is vital for all subsequent changes.
There is a supplied alias for this command, it is
aedmoreand there is a similaraedlessalias if you
prefer theless(1) command.

There are some facts that a reviewerknows
because otherwise the change would not be in the
"being reviewed" state: • the change compiles
cleanly, • the change passes all of its tests. Other
information about the change may be obtained
using the "change_details" variation of theael

command.

Theaerfail command may also be used by
reviewers to fail reviews and return a change to
the developer for further work; the reviewer must
supply a reason for the change history to record
for all time. Similarly, theaedeucommand may
be used by the developer to resume development
of a change at any time before it is integrated; no
stated reason is required.

13.5. Integratethe Change

A person nominated as an project integrator then
integrates the change. This involves making a
copy of the integration directory, applying the
modifications described by the change to this
integration directory, then building and testing all
over again.

This re-build and re-test is to ensure that no spe-
cial aspect of the developers environment influ-
enced the success up to this point, such as a
unique environment variable setting. The re-build
also ensures that all of the files in the baseline,
remembering that this includes source files and all
other intermediate files required by the build pro-
cess, remain consistent with each other, that the
baseline is self-consistent. The definition of the
baseline is that it passes its own tests, so the tests
are run on the baseline.

Use theaeibcommand to begin integration.

Theaebcommand is used to build the integration
copy of the change.

Theaetcommand is used to test the integration
copy of the change.

On later changes, the integration may also require
theaet -blcommand to test the change against the
baseline. Thistests ensures that the testfails
against the baseline. This failure is to ensure that
bug fixes are accompanied by tests which repro-
duce the bug initially, and that the change has
fixed it. New functionality, naturally, will not be
present in the old baseline, and so tests of new
functionality will also fail against the old base-
line.

Later changes may also have the regression tests
run, using theaet -regcommand. Thiscan be a
very time-consuming step for projects with a long
history, and thus a large collection of tests. The
aet -suggest command can also be used to run
"representative" sets of existing tests, but a full
regression test run is recommended before a
major release, or, say, weekly if it will complete
over the weekend. Thiscommand is also

Page 120 (bl/lib/en/user-guide/cA.0.so) Peter Miller

Aegis UserGuide

available to developers, so that they hav efewer
surprises from irate integrators.

The integrator may use theaeifail command to
return a change to its developer for further work;
a reason must be supplied, and should include rel-
evant excerpts from the build log in the case of a
build failure (not thewholelog!), or a list of the
tests which failed for test failures.

Theaeipasscommand may be used to pass an
integration. Whenthe change passes, the file his-
tories are updated. In the case of the first change,
the history is created, and problems with the
project configuration file’s history commands will
be revealed at this point. The integration won’t
pass, and should be failed, so that the developer
may effect repairs. There are rarely problems at
this point for subsequent changes, except for disk
space problems.

Once the history is successfully updated, aegis
renames the integration directory as the baseline,
and throws the old baseline away. The develop-
ment directory is deleted at this time, too.

13.6. Whatto do Next

There, the first change is completed. The whole
cycle may now be repeated, starting at "Create
Change," for all subsequent changes, with very
few differences.

It is recommended that you read theChange
Development Cycle
chapter for a full worked example of the first four
changes of an example project, including some of
the twists which occur in real-world use of aegis.

Remember, too, the definition:

aegis(ee.j.iz)n. a protection, a defence.

It is not always the case that aegis exists to make
life "easier" for the software engineers. The goal
is to have a baseline which always "works",
where "works" is defined as passing all of its own
tests. Wherever possible, the aegis program
attempts to be as helpful and as unintrusive as
possible, but when the "working" definition is
threatened, the aegis program intrudes as neces-
sary. (Example: you can’t do an integrate pass
without the integration copy building success-
fully.)

All of the "extra work" of writing tests is a long-
term win, where old problems never again reap-
pear. All of the "extra work" of reviewing
changes means that another pair of eyes sees the
code and finds potential problems before they

manifest themselves in shipped product. All of
the "extra work" of integration ensures that the
baseline always works, and is always self-consis-
tent. All of the "extra work" of having a baseline
and separate development directories allows mul-
tiple parallel development, with no inter-devel-
oper interference; and the baseline always works,
it is never in an "in-between" state. In each case,
not doing this "extra work" is a false economy.

Peter Miller (bl/lib/en/user-guide/cA.0.so) Page 121

User Guide Aegis

14. Appendix B: Glossary

The following is an alphabetical list of terms used
in this document.

administrator
Person responsible for administering a
project.

aw aiting_development
The state a change is in immediately after
creation.

aw aiting_integration
The state a change is in after it has passed
review and before it is integrated.

aw aiting review
An optional state a change is in after it is
developed, but before someone has chosen
to review it..

baseline
The repository; where the project master
source is kept.

being developed
The state a change is in when it is being
worked on.

being integrated
The state a change is in when it is being
integrated with the baseline.

being reviewed
The state a change is in after it is devel-
oped.

change
A collection of files to be applied as a sin-
gle atomic alteration of the baseline.

change number
Eachchangehas a unique number identify-
ing it.

completed
The state a change is in after it has been
integrated with the baseline.

delta number
Each time theaeib(1) command is used to
start integrating achangeinto thebaselinea
unique number is assigned. This number is
the delta number. This allows ascending
version numbers to be generated for the
baseline, independent of change numbers,
which are inevitably integrated in a differ-
ent order to their creation.

dependency maintenance tool
A program or programs external to aegis
which may be given a set of rules for how
to efficiently take a set of source files and

process them to produce the final product.

DMT
Abbreviation of Dependency Maintenance
Tool.

develop_begin
The command issued to take a change from
theawaiting developmentstate to thebeing
developedstate. Thechange will be
assigned to the user who executed the com-
mand.

develop_begin_undo
The command issued to take a change from
thebeing developedstate to theawaiting
developmentstate. Any files associated
with the change will be removed from the
development directory and their changes
lost.

develop_end
The command issued to take a change from
thebeing developedstate to thebeing
re viewedstate, or optionally to theawaiting
re viewedstate. Thechange must be known
to build and test successfully.

develop_end_undo
The command issued to take a change from
thebeing reviewedstate back to thebeing
developedstate. Thecommand must be
executed by the original developer.

developer
A member of staff allowed to develop
changes.

development directory
Each change is given a unique development
directory in which to edit files and build
and test.

history tool
A program to save and restore previous ver-
sions of a file, usually by storing edits
between the versions for efficiency.

integrate_pass
The command used to take a change from
thebeing integratedstate to thecompleted
state. Thechange must be known to build
and test successfully.

integrate_begin
The command used to take a change from
theawaiting integrationstate to thebeing
integratedstate.

integrate_begin_undo
The command used to take a change from
thebeing integratedstate to theawaiting

Page 122 (bl/lib/en/user-guide/cB.0.so) Peter Miller

Aegis UserGuide

integrationstate.

integrate_fail
The command used to take a change from
thebeing integratedstate back to thebeing
developedstate.

integration
The process of merging thebaselinewith
thedevelopment directoryto form a new
baseline. Thisincludes building and testing
the merged directory, before replacing the
originalbaselinewith the new merged ver-
sion.

integration directory
The directory used duringintegrationto
merge the existingbaselinewith a change’s
development directory.

integrator
A staff member who performsintegrations.

new_change
The command used to create new changes.

new_change_undo
The command used to destroy changes.

review_begin
The command used to take a change from
theawaiting reviewstate to thebeing
re viewedstate.

review_fail
The command used to take a change from
thebeing reviewedstate back to thebeing
developedstate.

review_pass
The command used to take a change from
thebeing reviewedstate to theawaiting
integrationstate.

reviewer
A person who may reviewchangesand
either pass or fail them (re view_passor
re view_fail respectively).

state
Eachchangeis in one of seven states:
awaiting development, being developed,
awaiting review, being reviewed, awaiting
integration, being integratedor completed.

state transition
The event resulting in achangechanging
from one state to another.

Peter Miller (bl/lib/en/user-guide/cB.0.so) Page 123

User Guide Aegis

15. Appendix D: Why is Aegis Set-Uid-Root?

The goal for aegis is to have a project that
"works". Thereis a fairly long discussion about
this earlier in this User Guide. One of the first
things that must be done to ensure that a project is
not subject to mystery break downs, is to make
sure that the master source of the project cannot
be in any way altered in an unauthorized fashion.
Note this says "cannot", a stronger statement than
"should not".

Aegis is more complicated than, say, set-group-id
RCS, because of the flaw with set-group-id: the
baseline is writable by the entire development
team, so if a developer says "this development
process stinks" he can always bypass it, and write
the baseline directly. This is averycommon
source of project disasters.To prevent this, you
must have the baseline read-only, and so the set-
group-id trick does not work. (Theidea here is
that there isnoway to bypass the QA portions of
the process. Sure, set-group-id will prevent acci-
dental edits on the baseline, if the developers are
not members of the group, but it does not prevent
deliberatecheckin of unauthorized code. Again,
the emphasis is on "cannot" rather than "should
not".)

Also, using the set-group-id trick, you need multi-
ple copies of RCS, one for each project. Aegis
can handle many projects, each with a different
owner and group, with a single set-uid-root
executable.

Aegis has no internal model of security, it uses
UNIX security, and so becomes each user in turn,
soUNIX can determine the permissions.

15.1. Examples

Here are a few examples of the uid changes in
common aegis functions. Unix "permission
denied" errors are not shown, but it should be
clear where they would occur.

new change (aenc):
become invoking user and read (edit) the
change attribute file, validate the attribute
fi le, then become the project owner to write
the change state file and the project state
fi le.

develop begin (aedb):
become the project owner and read the
project state file and the change state file, to
see if the change exists and is available for
development, and if the invoking user is on
the developer access control list. Become

the invoking user, but set the default group
to the project group, and make a dev elop-
ment directory. Become the project owner
again, and update the change state file to
say who is developing it and where.

build (aeb):
become the project owner to read the
project and change state files, check that the
invoking user is the developer of the
change, and that the change is in thebeing
developedstate. Becomethe invoking user,
but set the default group to the project
group, to invoke the build command.
Become the project owner to update the
change state to remember the build result
(the exit status).

copy file into change (aecp):
become the project owner to read the
project and change state files. Checkthat
the invoking user is the developer and that
the change is in thebeing developedstate,
and that the file is not already in the
change, and that the file exists in the base-
line. Becomethe invoking user, but set the
default group to the project group, and copy
the file from the baseline into the develop-
ment directory. Become the project owner,
and update the change state file to remem-
ber that the file is included in the change.

integrate fail (aeifail):
become the project owner to read the
project and change state files. Checkthat
in invoking user is the integrator of the
change, and that the change is in thebeing
integratedstate. Becomethe integrator to
collect the integrate fail comments, then
become the project owner to delete the inte-
gration directory, then become the devel-
oper to make the development directory
writable again. Thenbecome the project
owner to write the change state file, to
remember that the change is back in the
being developedstate.

integrate pass (aeipass):
become the project owner to read the
project and change state files. Checkthat
in invoking user is the integrator of the
change, and that the change is in thebeing
integratedstate. Make the integration
directory the new baseline directory and
remove the old baseline directory. Write
the change and project states to reflect the
new baseline and the change is in the

Page 124 (bl/lib/en/user-guide/cD.0.so) Peter Miller

Aegis UserGuide

completedstate. Thenbecome the devel-
oper to remove the development directory.

All the mucking about with default groups is to
ensure that the reviewers, other members of the
same group, have access to the files when it
comes time to review the change. The umask is
also set (not shown) so that the desired level of
"other" access is enforced.

As can be seen, each of the uid change either (a)
allowsUNIX to enforce appropriate security, or (b)
usesUNIX security to ensure that unauthorized
tampering of project files cannot occur. Each
project has an owner and a group: members of the
development team obtain read-only access to the
project files by membership to the appropriate
group, to actually alter project files requires that
the development procedure embodied by aegis is
carried out.You could have a single account (not
a user’s account, usually, for obvious conflicts of
interest) which owns all project sources, or you
could have one account per project.You can have
one group per project, if you don’t want your var-
ious projects to be able to see each other’s work,
or you could have a single group for all projects.

15.2. Source Details

For implementation details, see the
os_become * f unctions in theaegis/os.cfi le.
Theos_become_init function is called very
early inmain , in theaegis/main.cfi le. After that,
all accesses are bracketed byos_become and
os_become_undo function calls, sometimes
indirectly asproject_become * or
user_become *, etc, functions.You need to
actually become each user, because root is not
root over NFS, and thuschown tricks do not
work, and also because duplicating kernel permis-
sion checking in aegis is a little non-portable.

Note, also, that most system calls go via the inter-
face described in theaegis/glue.hfi le. Thisiso-
lates the system calls forUNIX variants which do
not have theseteuid function, or do not have a
correctly working one. The code in the
aegis/glue.cfi le spawns "proxy" process which
uses thesetuid function to become the user and
stay that way. If theseteuid function is avail-
able, it is used instead, making aegis more
efficient. Thisisolation, however, makes it possi-
ble for a system administrator to audit the aegis
code (for trojans) with some degree of confi-
dence. Systemcalls should be confined to the
aegis/log.c, aegis/pager.c, aegis/os.cand
aegis/glue.cfi les. Systemcalls anywhere else are

probably a Bad Thing.

Peter Miller (bl/lib/en/user-guide/cI.0.so) Page 125

User Guide Aegis

16. Appendix I: Internationalization and
Localization

The Aegis source code has been internationalized,
which is the process of modifying the original
source code to permit error messages and other
text to be presented in a language other than the
author’s native English. Thiswas a large and
often painful task, but it allows a degree of cus-
tomization of error messages and other
behaviours which would not have been otherwise
possible. (Italso makes the job of running a
spell-checker over the error messages signifi-
cantly easier.)

Localization is the process of translating the error
messages and other text into various different lan-
guages or nationalities. This appendix is primar-
ily aimed at localizers of Aegis.

16.1. The“.po” Files

The “lib/en/LC_MESSAGES” directory in the
source tree contains the various message files
needed to localize Aegis. You will find a number
of “.po” files in this directory, which translates
“programmer cryptic” into English.You will see
that each message has a comment attached,
describing the message and the context in which it
is used. Many messages also have “substitutions”
described, which are strings similar to shell vari-
ables which may be substituted into the message -
such as the file name for messages which have
something to do with a specific file.

The substitution mechanism is the same one as is
used for the various commands in the project
aegis.conffi le, and so all of the substitutions
described inaesub(5) are available to the transla-
tor. Note frequent use of theplural substitution,
which allows grammatically correct error mes-
sages to be issued when faced with the singu-
lar/plural dichotomy. Other substitutions include
the login name of the executing user, names of
projects, number and state of changes, etc.

Ideally, the task for a translator is to take the.po
fi les and translate themsgstr lines into the
appropriate language. The job will, of course, not
be that simple and so references into the code
have been included, so that you can read the code
should context be necessary to correctly translate
the message.

16.2. Checkingthe Code

There are a number of keywords you need to have
for thexgettextprogram when extracting message
strings. Thegettext keyword is not used

directly, because of the substitution mechanism
wrapped around it.

i18n error_intl
io_comment_append fatal_intl
report_error verbose_intl
report_error gram_error
rpt_value_error

In general, theetc/Howto.cookfi le causes the
messages to be extracted intoi18n-tmp/*.pofor
checking during the build.

16.3. Translators Welcome

If youare able to translate the error messages into
another language, please contact Peter Miller
<millerp@canb.auug.org.au> and he will tell you
how it is done. (Actually, he’ll point you to this
part of the User Guide. :-)

To translate the error messages, look up the two-
letter abbreviation
(http://www.w3.org/WAI/ER/IG/ert/iso639.htm)
of the language you are going to translate the
error messages to. The rest of these instructions
will call it xx.

In the source tree, you will see a directory called
lib/en/LC_MESSAGESwhich contains some.po
fi les. Theseare the text form of the message cata-
logues. You can view them with a simple text
editor.

Create a new directory for your translations, and
copy the English messages into it.

mkdir lib/ xx/LC_MESSAGES
cp lib/en/LC_MESSAGES/*.po \

lib/ xx/LC_MESSAGES

Now you need to edit each of the
lib/ xx/LC_MESSAGES/*.po fi les, replacing
themsgstr strings with suitable translations.
Leave themsgid strings and the comments
untranslated. Theseare text files, you can edit
them with a simple text editor. GNU Emacs has a
PO mode to make this easier.

The GNU Gettext (http://www.gnu.org/direc-
tory/gettext.html) sources have fairly good docu-
mentation (http://www.gnu.org/manual/get-
text/index.html) about this process.

If you want to test your translations, you need to
"compile" the text into the binary form used by
thegettext() system call. This is done using
themsgfmt(1) program from the GNU Gettext
package. To see your new translations in action,
you create a
/usr/local/lib/aegis/ xx/LC_MES-

Page 126 (bl/lib/en/user-guide/cI.0.so) Peter Miller

Aegis UserGuide

SAGESdirectory and arrange for themsgfmt(1)
output to be placed in it. Some of the messages
are hard to trigger, don’t expect complete test cov-
erage.

There are almost 600 error messages. If you aver-
age 1 message every 2 minutes, this is approxi-
mately 20 hours work. TheGerman translation,
for example, required around 12 hours.

When you are done translating, email the results
to Peter Miller <millerp@canb.auug.org.au> and
they will be included in the next release of Aegis.

Peter Miller (bl/lib/en/user-guide/main.ms) Page 127

User Guide Aegis

.

Page cxxviii (bl/lib/en/user-guide/main.ms) Peter Miller

