Aeqis
A Project Change Supervisor

User Guide

Peter Miller
millerp@canb.auug.@.au

User Guide Aegis

DEDICATIONS

This user guide is dedicated to my wife
Mary Therese Miller
for all her love and support
despite the computers.

And to my grandmother
Jean Florence Pelham
1905 — 1992
Always in our hearts.

This document describes Aegis version 4.24
and was prepared 10 March 2008.

This document describing the Aegis program, and the Aegis program itself, are
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

This program is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either
version 3 of the License, or (at your optionydater version.

This program is distributed in the hope that it will be useful, but WITHOUT ANARW
RANTY:; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should hae receved a opy of the GNU General Public License along with this pro-
gram. If not, see <http://www.gnu.org/licenses/>.

Page 2 (bl/lib/en/user-guide/c1.0.s0) Peter Miller

Aegis

UserGuide

Table of Contents

1. Introduction .
1.1. Year 2000 Status
1.2. What does aegis do?.
1.3. Wty use agis? . . .
1.4. Hav to use this manual .
1.5. GNU GPL

2. How Aegs Works
2.1. The Model .

2.1.1. The Baseline

2.1.2. The Change Mechanrsm .

2.1.3. Change States. .
2.1.4. The Software Engineers
2.1.5. The Change Process

2.2. Philosopi .
2.2.1. D@/elopment .
2.2.2. Post Deglopment . .
2.2.3. Minimalism .
2.2.4. Oerlap)
2.2.5. Design Goals .

2.3. Security .

2.4. Scalability

2.5. When (not) to use gs
2.5.1. Building .
2.5.2. Bsting
2.5.3. Reviwing

2.6. Further Wirk . .
2.6.1. Code Ceerage 'bol
2.6.2. Virtual File System

3. The Change Drelopment Cycle

3.1. The Deeloper
3.1.1. Before You Start .
3.1.2. The First Change.
3.1.3. The Second Change.

3.1.4. The Third and Fourth Changes .
3.1.5. Deeloper Command Summary .

3.2. The Reviwer)
3.2.1. Before You Start
3.2.2. The First Change.
3.2.3. The Second Change.

3.2.4. Reviewer Command Summatry .

3.3. The Intgrator
3.3.1. Before You Start
3.3.2. The First Change.
3.3.3. The Other Changes .

3.3.4. Integrator Command Summary .

3.3.5. Minimum Intgrations .
3.4. The Administrator.

3.4.1. Before You Start .

3.4.2. The First Change.

3.4.3. The Second Change.

3.4.4. The Third Change

Peter Miller

Couuvuohdwwwaw

M RN NCRRRETRNRNRNRNONEEENEODEEEEDDMNWNEWNEEPME

(bl/lib/en/user-guide/main.ms) Page mi

User Guide

>

(1)
Q

7

3.4.5. The Fourth Change . .
3.4.6. Administrator Command Summary.
3.5. What to do N« .
3.6. Common Questions .
3.6.1. Insulation
3.6.2. Partial Check-In .
3.6.3. Multiple Actve Branches . .
3.6.4. Collaboration .
4. The History ool

4.1. History File Names

4.2. Interfcing . .
4.2.1. history_create_ command .
4.2.2. history_get_command .
4.2.3. history_put_command . .
4.2.4. history_query_command .
4.2.5. history_content_limitation .
4.2.6. history_tool_trasheslef .
4.2.7. Quoting Filenames .
4.2.8. Bmplates . .

4.3. Using aesvt . . .
4.3.1. history_create_ command .
4.3.2. history_put_command .
4.3.3. history_get command . .
4.3.4. history_query_command .
4.3.5. Bmplates . .

4.3.6. Binary Files.

4.4. Using SCCS. . .
4.4.1. history_create_ command .
4.4.2. history_get_command .
4.4.3. history_put_command . .
4.4.4. history_query_command .
4.4.5. Bmplates . .

4.4.6. Binary Files.

4.5. Using RCS . .
4.5.1. history_create_ command .
4.5.2. history_get_command .
4.5.3. history_put_command .
4.5.4. history_query_command .
4.5.5. mege_command
4.5.6. Referential Intgity
4.5.7. Bmplates .

4.5.8. Binary Files.
4.5.9. history_put_ trashes;let

4.6. Using fhist . . .
4.6.1. history_create command
4.6.2. history_get_command .
4.6.3. history_put_command .
4.6.4. history_query_command .
4.6.5. Bmplates . .

4.6.6. Capabilities.
4.6.7. Binary Files.

4.7. Detecting History File Corruptlon
4.7.1. General Method .

4.7.2. Configuration Commands .

G E R R R R R N L N R L R L LR R L LS

Page mii (bl/lib/en/user-guide/main.ms) Peter Miller

Aegis

4.7.3. An Alternatie
4.7.4. Aegis’ Database .

5. The Dependendviaintenance dol

5.1.

5.2.

5.3.

5.4.

5.5.

5.6.
5.7.

5.8.

Required Features
5.1.1. Viev Paths

5.1.2. Dynamic Include File DependenC|es .
Derelopment Directory Style .

5.2.1. Viev Path .

5.2.2. Link the Baseline..
5.2.3. Cop All Sources .
5.2.4. Obsolete Features
Using Cook .

5.3.1. Irvoking Cook .
5.3.2. The Recipe File
5.3.3. The Recipe for C .
5.3.4. The Recipe foratc
5.3.5. The Recipe for xe.

5.3.6. Recipes for Documents.

5.3.7. Bmplates . .

Using Cak

5.4.1. Ivoking Cale

5.4.2. The Rules File.
5.4.3. The Rule for C.
5.4.4. The Rule for acc
5.4.5. The Rule for be
5.4.6. Rules for Documents
Using Mak .

5.5.1. Irvoking Make

5.5.2. The Rule File .
5.5.3. The Rule for C.
5.5.4. The Rule for &cc
5.5.5. The Rule for be
5.5.6. Rules for Documents
5.5.7. Other Maks . .
5.5.8. Bmplates .

5.5.9. GNU Mak VPATH Patch

5.5.10. GNU Makes VPATH+
Building Executable Scripts
GNU Autoconf .

5.7.1. The Sources

5.7.2. Building .

5.7.3. Esing .

5.7.4. An Optlmlzatlon
5.7.5. Signed-dfby

5.7.6. Importing the Next Upstreamr’f)all
5.7.7. Importing the Next Upstreamateh

No Build Required

5.8.1. Wly This May Not Be Such A Good Idea

6. The Difference dols

6.1.
6.2.

6.3.

Binary Files .

Interficing .
6.2.1. dif_ command
6.2.2. mege_command
When No Difis Required

Peter Miller

UserGuide

QQ@QLQ‘QCQCQCQN\l\IQQQL{IQQE%HEHNNNNHQQ@&@@@O’@J@

~N N

Db O OB B

(bl/lib/en/user-guide/main.ms) Page miii

User Guide

6.4. Using dif and mege
6.4.1. dif_ command
6.4.2. mege_command
6.5. Using fhist . .
6.5.1. dif_ command
6.5.2. mege_command
7. The Project Attribtes . . .
7.1. Description and Access.
7.2. Notification Commands.
7.2.1. Notification by email .
7.2.2. Notification by USENET
7.3. Exemption Controls .
7.3.1. One Person Projects
7.3.2. o Person Projects .
7.3.3. Larger Projects
7.3.4. RSS Feeds.
8. Testing .
8.1. Why Bother’>

8.1.1. Projects for which Aegls Testmg is Most Swtable.

8.1.2. Projects for which Aegis’ Testing is Useful .

8.1.3. Projects for which Aegis’ Testing is Least Useful .

8.2. Writing Tests
8.2.1. Contribtors . . .
8.2.2. General Guidelines .
8.2.3. Bourne Shell
8.2.4. Perl
8.2.5. Batch &sting

9. Branching .

9.1. Hav To Use Branchlng .

9.2. Transition Using aenrls .

9.3. Cross Branch Mge .

9.4. Multiple Branch Deslopment

9.5. Hierarcly of Projects
9.5.1. Fundamentals .
9.5.2. Incremental Inggation
9.5.3. Super-Project Branching .
9.5.4. Super-Projectebting . .
9.5.5. The Next Cycle
9.5.6. Bug Fixing .

9.6. Conflict Resolution . .
9.6.1. Cross Branch Mge
9.6.2. Insulation

9.7. Ending A Branch .

10. Tips and faps

10.1. Renaming Include Flles .

10.2. Symbolic Links .

10.3. User Setup.
10.3.1. The .cshrc or proflldés
10.3.2. The AEGIS_ATH environment \arlable
10.3.3. The .aegisrid . .
10.3.4. The defaulting mechanism .

10.4. The Project Owner .

10.5. USENET Publication Standards
10.5.1. CHANGES

Page miv (bl/lib/en/user-guide/main.ms)

>
(1)
Q
7

ERSRERRRR AR BB R R ER R R LB BByl N eRNeee 0080 e e

Peter Miller

Aegis UserGuide

10.5.2. MANIFEST a6
10.5.3. Makefe . as
10.5.4. patchhl.h . . a6
10.5.5. Building Patch Files a6
10.6. Heterogeneous i@opment @8
10.6.1. Projecaegis.confile 8
10.6.2. Change Attrilde . a8
10.6.3. Network Files. a9
10.6.4. DMT Implications a9
10.6.5. Test Implications a9
10.6.6. Cross Compiling. .o 10
10.6.7. File Version by Architecture . 10
10.7. Reminders. . .o 10
10.7.1. Avaiting Development 10
10.7.2. Being Deeloped . 10
10.7.3. Being Revieed 10
10.7.4. Avaiting Integration . 10

11. Geographically Distributed Delopment 11
11.1. Introduction . .o m
11.1.1. Risk Reduction . 1
11.1.2. What to Send. m
11.1.3. Methods ando'bologles 11

11.1.4. The Rest of this Chapter .
11.2. Manual Operation . .
11.2.1. Manual Send.
11.2.2. Sending Baselines .
11.2.3. Sending Branches .
11.2.4. Manual Reces
11.2.5. Getting Started .
11.3. Sneaker Net .
11.4. Automatic Operation
11.4.1. Sending
11.4.2. Receing .
11.5. World Wide &b .
11.5.1. Serer
11.5.2. Bravser . . .
11.5.3. Hands- Freera'cklng .
11.6. Security. .
11.6.1. Trojan Horses
11.6.2. PGP. .
11.6.3. Sorceres’ Apprentlce
11.7. Ratches o
11.7.1. Send.
11.7.2. Recere .
11.7.3. Limitations.
12. Further Reading . .
12.1. Software Configuration Management
12.2. Reviwing .
13. Appendix A: Ney Prolect chk Reference .
13.1. Create the Project . .o
13.1.1. Add the Staf .
13.1.2. Project Attribtes . .
13.2. Create Change One
13.3. Deelop Change One

%'E"5;,3%5‘%BE%%EEGEEEKEEEEEEESBBBBBB

Peter Miller (bl/lib/en/user-guide/main.ms) Page mv

User Guide

13.4. Reviev The Change.
13.5. Integrate the Change .
13.6. What to do Né

14. Appendix B: Glossary . .

15. Appendix D: Wk is Aeds Set- U|d Root”
15.1. Examples . S
15.2. Source Details

16. Appendix I: Internationalization and Locallzatlon.

16.1. The “.po” Files
16.2. Checking the Code.
16.3. Translators ¥lcome . .

Page mvi 0

Peter Miller

Aegis

1.

Aegis is a CASE tool with a ddrence. Inthe
spirit of theuNIX® Operating System, Aegis is a
small component designed toomk with other
programs.

Intr oduction

Many CASE systems attempt to provideesy-
thing, from lubble charts to source control to
compilers. Usersre trapped with the compo-
nents supplied by the CASE system, and if you
don't like ane of the components (it may be too
limited, for instance), then that is just tough.

In contrastuNIX provides mag components of a
CASE system - compilers, editors, depengenc
tools (such as mal, source control (such as
SCCS). Yu may substitute the tool of your
choice - gcc, joe, cake, rcs (to name a few) if you
don't like the ones supplied with the system.

Aegis adds to this list with sofave coniguration
management (SCM), and consistent witkix
philosoply, Aegs does not dictate the choice of
ary of the other tools (although it may stretch
them to their limits).

1.1. Year 2000 Status
Aegis does not suffer from Year 2000 problems.

» Aegs stores dates internally in Unix styliee(
seconds offset), so internal storage of times and
dates does not suffer fromya¥ 2K problems.

» Aegs aways uses the ANSI C standastif-

time function to display times and dateglhis
assumes that your vendor has supplied a compli-
ant strftime .) This means that displaying
dates does not assunieeld field widths, nor will

it display the year 2000 as “100".

» There is no user-input of years atydime, so
there is no issue surrounding “guessing” the cen-
tury.

1.2. Whatdoes aegis do?

Just what is software configuration management?
This question is sfitiently broad as to require a
book in answer In essence, the ges program is

a project change supervisott provides a frame-
work within which a team of delopers may
work on maly changes to a program indepen-
dently and the agis program coordinates inte-
grating these changes back into the master source
of the program, with as little disruption as possi-
ble. Resolutionof contention for source files, a
major headache for gnproject with more than
one deeloper, is one of the agis progranms major
functions.

Peter Miller

(bl/lib/en/user-guide/c1.4.s0)

UserGuide

It should be noted that the aegis program is a
developer’s tool, in the same sense as mak
RCS are degloper’s tools. Itis not a manages’
tool - it does not pnade progress tracking or help
with work allocation.

1.3. Why use aegis?

So wly should you use the aegis prograrihe
agyis program uses a particular model of the
development of software projects. This model
has a master source (or baseline) of a project, con-
sisting of seeral (possibly seeral hundred) ifes,

and a team of delopers creating changes to be
made to this baseline. When a change is com-
plete, it is integrated with the baseline, to become
the nev baseline. Eaclthange must be atomic
and self-contained, no change is a#al to cause
the baseline to cease toosk. "Working" is
defined as passing itswm tests. The tests are
considered part of the baselindegis prosides
support for the desloper so that an entire cppf

the baseline need not be éakto change a fie
files, only thoseiles which are to be changed
need to be copied.

The win in using the a@gs program is that there
are O(n) interactions between deopers and the
baseline. Contrasthis with a master source
which is being edited directly by thewdopers -
there isO(n!) interactions between ddopers -
this males adding "just one" more oper a
potential disaster.

Another win is that the project baselinavays
works. Always having a working baseline means
that a version is alays available for demonstra-
tions, or those "pre-release snapshots" we are
always forced to provide.

The abwee alvantages are allery well - for man-
agement types.Why should Joe Aerage Pro-
grammer use the gis program? Recall that RCS
provides file locking, but only for oneilé at a
time. Theaais program provides the file lock-
ing, atomically for the set ofifes in the change.
Recall also that correct RCS usage locks ilee f
the instant you start editing it. This makes popu-
lar files a project bottleneckThe aegis program
allows concurrent editing, and a resolution mech-
anism just before the change must begrdated,
meaning fewer delays for J.A.Programmer.

Page 3

User Guide

1.4. How to use this manual

This manual assumes the reader is alreadyilf
iar with the uUNIX operating system, and with
developing software using thenix operating sys-
tem and the toolsvailable; terms such aRCS
andSCCSandmakel) are not explained.

There is also the assumption that the reader is
familiar with the issues surrounding teanvele
opment of software; coordination and multiple
version issues, for example, are not explained.

This manual is broken into a number of sections.

Chapter 2
describes he aegs works and some of the
reasoning behind the design and implemen-
tation of the aegis program. Look here for
answers to "W does it..." questions.

Chapter 3
is a worked example of he particular users
interact with the agis program. Look here
for answers to "He do I..." questions.

Chapter 4
is a discussion of o aegs interacts with
the History Tool, and provides templates
and suggestions for history tools known to
work with aegis.

Chapter 5
is a discussion of o aegs interacts with
the DependencMaintenance Tool (DMT),
and provides templates and suggestions for
DMTs known to work with aegis.

Chapter 6
is a discussion of o aegs interacts with
the Difference Tools, and provides tem-
plates and suggestions for difference tools
known to work with aegis.

Chapter 7
describes the project attributes andvhbe
various parameters may be used for particu-
lar projects.

Chapter 8
describes managing tests and testing with
Aegis.

Chapter 9
describes the branching mechanism used in
Aegis.

Chapter 10
is a collection of helpful hints on toto
use aegis &ctively, based on real-orld
experience. Thids of most use when ini-
tially placing projects under the supervision
of the aegis program.

Page 4

(bl/lib/en/user-guide/c7.0.s0)

Aegis

Chapter 11
describes ho to manage geographically
distributed deelopment using Aegis.

Appendix A
is a quick reference for placing arigting
project under aegis.

Appendix B
is a glossary of terms.

Appendix D
is a description of wh Aegs must be set-
uid-root, for system administrators who are
concerned about the security issues.

Appendix |
is a brief look at internationalization and
localization if Aegis.

1.5. GNUGPL

Aegis is distributed under the terms and condi-
tions of the GNU General Public Licens€ro-
grams which are deloped using Agis are not
automatically subject to the GNU GPLOnly
programs which are dedtive works based on
GNU GPL code are automatically subject to the
GNU GPL. We dill encourage software authors
to distribute their wrk under terms lig those of
the GNU GPL, but doing so is not required to use
Aegis.

Peter Miller

Aegis

2. How Aegis Works

Before you will be able to exploit Aegis fullyou
will need to knav what Aegis does and wh

The Aegis program pwides a change control
mechanism and a repositpeyaibset of the func-
tionality which CASE vendors call Sofare Con-

figuration Management (SCM). In order tiv f
into a softvare engineering environment, oryan
place softvare iswritten, Aegis needs a clearly
defined place in the scheme of things.

This chapter describes the model of the safev
development process embodied in theghsepro-
gram, some of the deliberate design decisions
made for Aegis, some of the things Aegis will and
wont do for you, and the situations wheregseis
most and least useful.

2.1. TheModel

The model of the softare deelopment process
used by Agis evolved and gre with time in a

commercial softare deelopment emironment,

and it has continued to be used andeligped.

The model described here is generic, and can be
adapted in a variety of ays. Thesewill be
described at the ralent points in the text.

2.1.1. TheBaseline

Most CASE systems velve aound a repository:

a pace wherestuffis kept. Thisstuffis the rav
material that is processed in somaywto produce
the final product, whater that may be.This stuff

is the preferred form for editing or composing or
whatever.

In the Aegis program, the repository is lumas
the baselineand the units obtuff are uNix files.
The Aegis program maks no distinction between
text and binary files, so both are supported.

The history mechanism which must be included
in ary repository function is not pwided by the
Aegis program. It is instead provided by some
other per-project configurable software, such as
RCS. Thismeans that the user may select the his-
tory tool most suited to grgiven project. Italso
means that Agis is that much smaller to test and
maintain.

The structure of the baseline is dictated by the
nature of each project. The Aegis program
attempts to mak as éw abitrary rules as possi-
ble. Thereis one mandatory file in the your
project baseline. The mandatoritefis called
aegis.conby default, and contains the pganoject
configuration information. The name of thisile

Peter Miller

(bl/lib/en/user-guide/c7.1.s0)

UserGuide

may be changed if youamt to call it something
different. Itios also common (though not manda-
tory, and the name may be changed) towveha
directory calledestwhich contains all of the test
scripts. Thecontents and structure of thest
directory (or whateer you call it) are controlled
by a test ifename pattern you supply to @is.
Tests are treated just Bkany ather sourceile,
and are subject to the same process.

The baseline in Aegis has one particular aiteb

it always works. Itis alays there to shae off to
visiting big-wigs, it is alvays there to grab a cgp

of and ship a "pre-release snapshot" to some
overly anxious customelit is dways there to let
upper management "touch and feel" the progress
being made twards the next release.

You may claim that "wrks" is comfortably fuzzy

but it is mot. Thebaseline contains not only the
source of a project, but also the tests for a project.
Tests are treated just Bkany ather sourceile,

and are subject to the same proceshaseline is
defined to "work" if and only if it passes all of its
own tests. TheAegis program has mandatory
testing, to ensure that all changes to the baseline
are accompanied by tests, and that those tests
have keen run and are known to paghis means
that no change to the baseline may result in the
baseline ceasing to wdtk

The model may be summarized briefly: it consists
of abaseling(master source), updated through the
agengy of an integrator, who is in turn fed
changesby a team ofdevelopers These terms
will be explained in the folling sections.See
figure 1 for a picture of Wofiles flow around the
system.

The baseline is a set of files including the source
files for a projects, and also all ded files (such

as generated code, binary files from the compiler
etc), and all of the testdlests are treated just &k
ary other source file, and are subject to the same
process. Allfiles in the baseline are consistent
with each other.

Thus the baseline may be considered to be the
closureof the sourceilies, in mathematical terms.
That is, it is the sourcalds and all implications
flowing from those sourceildés, such as object
files and recutables. Allfiles in the baseline are
consistent with each other; this means that

1 well, mostly. It is possible for this restriction
to be relaxed if you feel there are special circum-
stances for a particular changehe danger is that a
change will be integrated with the baseline when
that change is not actually of acceptable quality.

Page 5

User Guide

baseline
developmen developmen
directory directory

integrator
integrate
pass

integration
directory

Figure 1 Flow of Files through the Model

development builds can takdject files from the
baseline rather than neitd them within the deel-
opment directory.

The baseline is readable by all §taind usually
writable by no-one When it is necessary to write
to the baseline, this is done by Aegis, as will be
shown belov.

In mary ways, the baseline may be thought of as
a dcatabase, and all deed files are projections
(views) of the sourceilés. Rassing its own tests
may be thought of as input validation délds.
This is a pwerful concept, and indeed the imple-
mentation of the Agis program performs mgn
of the locking and synchronization tasks
demanded of a database engine.

All of the files forming this database aretéles.
This means that thhemay be repaired with an
ordinary text editqr should remedial action be
necessary The format is documented in section 5
of the reference manual. Should you wish to per
form some query not yetvalable in Aegis, the
files are readily accessible to members of the

Page 6

(bl/lib/en/user-guide/c7.1.s0)

Aegis

appropriateJNIX group.

Tests are treated just Bkany ather sourceile,
and are subject to the same process.

2.1.2. TheChange Mechanism

Any changes to the baseline are made by atomic
increments, known (unoriginally) as "changes".
A change is a collection of files to be added to,
modified in, or deleted from, the baselin€hese
files must all be so altered simultaneously for the
baseline to continue to "work".

For example, if the calling interface to a function
were changed in one file, all calls to that function
in ary other ile must also change for the baseline
to continue to wrk. All of the fles must be
changed simultaneoushand thus must all be
included in the one changeDther files which
would logically be included in such an change
include the reference manual entry for the func-
tion, the design document relating to that area of
functionality, the releant user documentation,
tests would hee © be ncluded for the functional-
ity, and existing tests may need to be revised.

Changes must be accompanied by tedtsese
tests will either establish that a bug has beesdf
(in the case of a bug fix) or will establish thatmne
functionality works (in the case of an enhance-
ment).

Tests are shell scripts, and as such are capable of
testing anything which has functionality accessi-
ble from the command lineThe ability to run
background processes allowsee dient-server
models to be testedlests are thus text files, and
are treated as source files; yhmay be modied

by the same process asyaather source ife.
Tests usually need to be revised as a projeatrgro
and adapts to changing requirements, or to be
extended as functionality isxeended. €sts can
evan be ckleted if the functionality thetest has
been deleted; tests are deleted by the same pro-
cess as another source file.

2.1.3. ChangeStates

As a change is deloped using Aegis, it passes
through six statesMany Aegs commands relate

to transitions between these states, and Aegis per
forms ary validation at these times.

2 Whether to alle sevaal logically independent
changes to be included in the one change is aypolic
decision for individual projects to make, and is not
dictated by the Aegis program. It is a responsibility
of reviewers to ensure that all weand changed
functionality is tested and documented.

Peter Miller

Aegis

The six states of a change are described as fol-
lows, although the arious state transitions, and
their conditions, will be described later.

2.1.3.1. Awaiting Development

A change is in this state after it has been created,
but before it has been assigned to aveitgper.
This state can’be «kipped: a change canbe
immediately assigned to av@#oper by an admin-
istrator because this disempowers the staff.

The Aegis program is not a progress tracking tool,
nor is it a vork scheduling tool; plenty of both
already exist.

2.1.3.2. Beindoeveloped

A change is in this state after it has been assigned
to a deeloper, by the deeloper This is the coal
face: all deelopment is carried out in this state.
Files can be edited in no other state, this particu-
larly means that only delopers can deslop,
reviewers and integrators only V@ the power to
veto a change.Staf roles will be described more
fully in a later section.

To avance to the next state, the change must
build successfullyit must hae tests, and it must
pass those tests.

The nev tests must alséail against the baseline;
this is to establish that tests fargpfixes actually
reproduce the bug and then demonstrate that it is
gone. N functionality added by a change will
naturally fail when tested in the old baseline,
because it is not there.

When these conditions are met, theg&epro-
gram marks all of the changes files as &tk
simultaneously If any one of them is already
locked, you cart’leave the being deelopedstate,
because the file is part of a change which is some-
where betweerbeing evewed and being inte-
grated

If any one of them is out-of-date with respect to
the baseline, the lock is not taken, eithleocking

the files at this state transition means that popular
files may be modid simultaneously in man
changes, but that only &éfences to the latesew
sion are eer submitted for intgration. TheAegis
program provides a mechanism, described ,later
for bringing out-of-dateilies in changes up-to-

31t is possible for these testing requirements to
be waived on dther a peiproject or percchange
basis. Hev is described in a later sectionThe
power to waive this requirement is not automati-
cally granted to delopers, as xperience has
shown that it is usually abused.

Peter Miller

(bl/lib/en/user-guide/c7.1.s0)

UserGuide

date without losing the edits made by thedie
oper.

2.1.3.3. Awaiting Review

The default configuration for an A& project
does not use this state, because for small-ish
projects it can be tediouskor lamer projects,
however, it assists in coordinating veewers when
you use email noiifation that a rdew is
required to seeral potential reviewers.

To enable this state, you need to change the
develop_end_actiofield of the project attriltes.
Seeaepdl) for more information, otkaepdl)

for a GUI interface.

It is also possible, by a different setting of the
same project attride, to skip the code view
step altogetherThis can be of benefit to one-per
son projects where independent codeiess
would be impossible.

The rest of this description will assume Hweait-
ing revew state is not being used, but code
reviewsare being used, to simplify matter©nce
you are more familiar with Ags, enabling the
use of theawaiting review state will be simple
and will beha&e intuitively.

2.1.3.4. BeingReviewed

A change is in this state after avdeper has
indicated that deslopment is complete.The
change is inspected, usually by a second party (or
parties), to ensure that it matches the change
description as to what it is meant to be doing, and
meets other project or comparstandards you
may hae.

The style of reiew, and who may reiew, is rot
dictated by the Agis program. A number of
alternatve havebeen observed:

* You may hae a &ngle person who coordinates
review panels of, say4 peers, with this coordina-
tor the only person allowed to signFafeview
passes or fails.

* You may allev any of the deelopers to reiew
ary other dereloper’s changes.

* You may require that only senior staffyriliar
with large portions of the code, be aled to
review.

The Agis program enforces that avéper may
not revziew their own code.This ensures that at
least one person other than thevdigper has
scrutinized the code, and eliminates a rathei-ob
ous conflict of interestlt is possible to turn this

Page 7

User Guide

requirement dfon a per-project basis, but this is
only desirable for projects with a one person team
(or maybe tw). TheAegis program has no ay

of knowing that the user passing aviesv has
actually looked at, and understood, the code.

The reviewer knaws certain things about a change
for it to reach this state: it has passed all of the
conditions required to reach this statdhe

Aegis

The additional compilation has éwpurposes: it
ensures that the successful compile performed by
the deeloper was not a fluk of the deeloper’s
ervironment, and it also allows the baseline to be
the closure of the sourcage$. Thatis, all of the
implications flowing from the source files, such
as objectifes and linked programs or librarieR.

is not possible for Aegis to kmowhich files these

change compiles, it has tests and it passes those &€ in the deslopment directorybecause Aegis is
tests, and the changes are to the current version of decoupled from the tild mechanism (this will

the baseline. The veewer may thus concentrate
on issues of completeness, implementation, and
standards - to name only avfe

2.1.3.4.1. CustomizingCode Review Policy

It is possible to require more than oneieaer

for a change. By setting thesview_policy -
commandof the project configuration file, you
can pass a shell script (or other command) the rel-
evant change details, and theitestatus will be
used to determine of the change ahes to the
awaiting intgration state, or requires additional
code reviewers first.

Because it is a program, it is possible to imple-
ment almost anpolicy you can think of, includ-
ing particular reiewers for particular areas of
code, or that there must be 3 differentieavers,
etc

2.1.3.5. Awaiting Integration

A change is in this state after aviever has indi-
cated that a change is acceptable to the
reviewer(s). Thisis essentially a queue, as there
may be may devdopers, lut only one intgration
may proceed at grone time.

The issue of one integration at a time is a philo-
sophical one: all of the changes in the queue are
physically independent; because of tBevelop
End locking rules thg do rot have intersecting
sets of iles. The problem comes when one
change wuld break anotheiin these cases the
integrator needs to kmeo which to bounce and
which to accept.Integrating one change at a time
greatly simplifes this, and enforces the "only
change one thing at a time" maxim, occasionally
at the expense of integrator throughput.

2.1.3.6. Beingntegrated

A change is in this state when the oration of

the change back into the baseline is commenced.
A (logical) copy of the baseline is taken, and the
change is applied to that gopln this state, the
change is compiled and tested once again.

Page 8

(bl/lib/en/user-guide/c7.1.s0)

discussed later).

To advance to the né state, the integration cpp
must h&e been compiled, and the tests included
in the change must @ keen run and passed.

The integrator also has thevper of weto. A
change may fail an ingeation because it fails to
build or fails tests, and also just because the inte-
grator says so.This allows thebeing intgrated
state to be anotherwview state, if desired.The
being intgratedstate is also the place to monitor
the quality of reviews and reviewers.

Should a &ulty change manage to reach this
point, it is to be hoped that the integration pro-
cess, and the irgeators harp eyes, will detect it.

While most of this task is automated, this step is
necessary to ensure that some strange quirk of the
developer’s environment was not responsible for
the change reaching this stagéhe change is
built once more, and tested once more. If a
change fails to build or test, it is returned to the
developer for further work; the intgator may
also choose to fall it for other reasons. If the inte-
grator passes that change, the integratadian
becomes the mebaseline.

2.1.3.7. Completed

A change reaches this state when integration is
complete. Thelogical) copy of the baseline used
during integration has replaced thepoes copy

of the baseline, and the file historiesvédren
updated. Oncén this state, a change mayvee
leave it, unlike dl other states.

If you wish to remge a diange which is in this
state from the baseline, you will Veato submit
another change.

2.1.4. TheSoftware Engineers

The model of softare deelopment used by
Aegis has four dierent roles for software engi-
neers toifl. Thesefour roles may bewerlapping
sets of people, or be distinct, as appropriate for
your project.

Peter Miller

Aegis

2.1.4.1. Deeloper

This is the coaldce. Thisrole is where almost
evaything is done. This is the only role alled
to edit a source file of a project.

Most staf will be developers. Therds nothing
stopping a desloper from also being an adminis-
trator, except for the possible conflict of interests
with respect to testingcemptions.

A devdoper may edit manof the attributes of a
change while it is being deloped. Thisis
mostly useful to update the description of the
change to say whit was done and what was actu-
ally done. A devdoper may not grant testing
exemptions (but thg may be relinquished).

2.1.4.2. Reiewer

The role of the ndgewer is to check a deloper’s
work. Thisreview may consist of a peexamin-

ing the code, or it may be handled by a single
member of stdfsetting up and scheduling multi-
person reiew panels. TheAegis program does
not mandate what style ofview, it only requires
that a rgiewer pass ordil each change. If it
passes, an integrator will handle ikheotherwise

it is returned to the deloper for further work.

In a large team, the viewers are usually selected
from the more senior members of the team,
because of their depth okmerience at spotting
problems, but also because this is an opportunity
for more senior members of dtéd coach juniors

on the finer points of the art.

The Aegis programs makes some of the
reviewers task easier because the weewer
knows seeral speciic things about a change
before it comes up for veew: it builds, it has
tests, and the have run successfully There is
also optional (per project) additional conditions
imposed at the end of @wdopment, such as line
length limits, or apthing else which is automati-
cally testable.The Aegis program also provides a
difference listing to the wewer, so that each and
evay edit, to each andvery file, can be pointed
out to the reviewer.

There is nothing stopping aviewer from being
either an administrator or a\g#oper The Agis
program specifically preents a deeloper from
reviewing his own work, to eoid conflicts of
interest. (Itis possible for this restriction to be
waived, kut that only makes sense for one person
projects.)

It will occasionally be necessary to arbitrate
between a deloper and a mdewer The

Peter Miller

(bl/lib/en/user-guide/c7.1.s0)

UserGuide

appropriate person to do thisouwld hae line
responsibility abee both staf invdved. Thusit

is desirable that supervisors/managers not be
reviewers, except in very small teams.

2.1.4.3. Integrator

The role of the intgrator is to tak a dange
which has already beenviewed and intgrate it
with the baseline, to form a webaseline. The
integrator is thus the last line of defense for the
baseline.

There is nothing prenting an integrator from
being an administratpa devdoper or a reiewer.
The Aegis program specifically prents a deel-
oper or rgiewer from integrating his own evk,
eliminating ary conflict of interests. (It is possi-
ble for this restriction to be aived, but that only
makes sense for one andtperson projects.)

It will occasionally be necessary to arbitrate
between an integrator and aviesver and/or a
developer The appropriate person to do this
would have line responsibility abee dl of the
staf invdved. Thusit is desirable that supervi-
sors/mangers not be integratorgcept in \ery
small teams.

The baseline is readable by alvdepers, but not
writable. All updates of the baseline to reflect
changes produced by \g#opers are performed
through the ageyoof the integrator.

2.1.4.4. Administrator

The project administrator has the faliog
duties:

* Create n& changes. Thesmay be the result of
some customer bug reporting mechanism, it may
be the result of e functionality being requested.

» Grant testing ®emptions. By default, Aais
insists that all changes be accompanied by tests.
The project administrator may grant case-by-case
exanptions, or a project-widexemption.

» Add or remwe daff. Thefour roles described in
this section may be assigned to, or reeddfrom,
specificuNix logins by the project administrator.

» Edit project attrilntes. There are maw
attributes attached to a project, only a project
administrator may alter them.

» Edit change attribtes. There are mag
attributes attached to a change, only a project
administrator may alter all of them.

A project usually has only one or avadministra-
tors at ag one time.

Page 9

User Guide

2.1.5. TheChange Process

This section will ®&amine the progression of a
change through the six change staté®st of the
attention will be gien to the conditions which
must be met in order to progress from one state to
the net, as this is where the softwarevdep-
ment model empled by Aegis is most often
expressed.

See fgure 2 for a picture of o all of the states
and transitions fit together.

2.1.5.1. NewChange

A project administrator creates a changghis
change will consist mostly of a description at this
time. The project administrator is not able
(through Aegis) to assign it to a specificvde
oper.

The change isveaiting development; it is in the
awadting development state.

2.1.5.2. NewChange Undo

It is possible to abandon a change if it is in the
awaiting derelopmentstate. All record of the
change, including its description, will be deleted.

It is called new change undo to emphasize the
state it must be in to delete it.

2.1.5.3. Degelop Begin

A devdoper, for whatever reason, scans the list of
changeswaiting development. Haing selected a
change, the deloper then assigns that change to
herself.

The change is mo being deeloped; it is in the
being deeloped state.

A number of Agis commands only work in this
state, including commands to includiéed and
tests in the change (be yheew files to be added
to the baseline,ilés in the baseline to be modi-
fied, or files to be deleted from the baseline),
commands to Wild the change, commands to test
the change, and commands tofeat€nce the
change.

The process of taking sources files, the preferred
form for editing of a project, and transforming
them, through various manipulations and transla-
tions, into a "fhished" product is known asuitd-

ing. Inthe unix world this usually means things
like compiling and linking a program, but as
fancy graphical programs become more wide-
spread, the source files could be the binary output
from a graphical Entity-Relationship-Diagram

Aegis

new
change

awadting
development

develop
’begin

being
developed

being
reviewed

review
pass
|

awadting
integration

integrate
’begin

being
integrated

integrate
’pass

completed

Figure 2 Change States and Transitions

editor, which would then be run through a
database schema generator.

The process of testing a change has three aspects.
The most intuitre is that a test must be run to
determine of the functionality evks. Thesecond
requirement is that the test be runaiagt the
baseline and fail; this is to ensure thag$ are

not just fxed, but reproduced as well. The third
requirement is optional: all or some of the tests
already in the baseline may also be rurests

Page 10 (bl/lib/en/user-guide/c7.1.s0) Peter Miller

Aegis

consist ofuNix shell scripts - aything that can be
done in a shell script can be tested.

In preparation for ndew, a dange is dierenced.
This usually consists of automatically comparing
the present contents of the baseline with what the
change proposes to do to the baseline, ditea f
by-file basis. The results of the difference, such
asunix diff -c output, is kept in a differencédf,

for examination by the rgewer(s). Thebenefit

of this procedure is thatviewers may gamine
these iles to see wery change the deloper
made, rather than only thewdbus ones. The dif-
ferencing commands are genoject conigurable,
and other alidations, such as line length restric-
tions, may also be imposed at this time.

To leave tis state, the change mustvaaource
files, it must hee tests, it must hae huilt success-
fully, it must hae passed all its own tests, and it
must hae keen differenced.

2.1.5.4. Dgelop Begin Undo

It is possible to return a change from the being
developed state to thenaiting development state.
This is usually desired if a deoper selected the
wrong change by mistak It also provides a
method to start\er on a dange for some other
reason.

2.1.5.5. Degelop End

When the conditions for the end ofvelmpment
have been met (the change must/haource fles,

it must hae tests, it must hae huilt successfully

it must hae passed all its own tests, and it must
have keen differenced) the deloper may cause
the change to lea the being deeloped state and
enter the being wewed state. The Aegis pro-
gram will check to see that all the conditions are
met at this time. There is no histonel of
unsuccessful delop end attempts.

Most of these preconditions are determined by the
use of time stamps which are recorded faious
operations, in addition tdlé system timestamps
on the fles themselgs. Logicalsequencingd.g.
tests being run after building after editing) is also
verified.

Note that there are 3 kinds of tests

1. If a change contains a wetest or a test
which is being modified, this test must pass
against the code compiled and lexk in the
change. Thisis simply referred to as a
“test”. Changegnay be granted anxemp-
tion from such tests.

Peter Miller

(bl/lib/en/user-guide/c7.1.s0)

UserGuide

2. If a change contains a wetest and the
change is a bug fix, this test mdiail against
the old code in the baseline. This is to con-
firm that the bg has beeniXed. Thisis
referred to as a “baseline testChanges
may be granted anxemption from such
tests.

3. Tests which alreadyxeést in the baseline may
be run against the code compiled anddithk
in the changeThese tests must pass. This is
to confrm that the project has notgiessed,
which is wly these tests are referred to as
“regression tests”. Changes may be granted
an eemption from such tests.

A successful deglop end command results in the
change advancing from theeing deelopedstate
to thebeing eviewedstate. (Itis also possible to
adwance to thewaiting review state or thewait-
ing integration state. Seeaeddl) or aepatt(5)
for more information.)

2.1.5.6. Deelop End Undo

There are mantimes when a deloper thinks
that a change is completed, and goes hunting for a
reviewer Half way davn the hall, she thinks of
something that should ta been included.

It is possible for a desloper to rescind ®evelop
Endto allow further work on a changeNo rea-
son need be gén. Thisrequest may be issued to
a dhange in either thbeing eviewedor awaiting
integrationstates.

2.1.5.7. Reiew Pass

This event is used to notify Aegis that the change
has been examined, by a method unsetifs
discussed ahe, and has been found to be accept-
able.

2.1.5.8. Reiew Pass Undo

The reviewer of a change may rescindReeview
Pass while the change remains in ttevaiting
integration state. Noreason need be supplied.
The change will be returned to theing eviewed
state.

2.1.5.9. Reiew Falil

This event is used to notify Aegis that the change
has beenamined, by a method unspecified as
discussed alwe, and has been found to be unac-
ceptable.

A file containing a brief summary of the problems
must be gien, and will be included in the

Page 11

User Guide Aegis

changes history.

The change will be returned to theing deel-
opedstate for further work.

It is not the responsibility of srreviewer to fix a
defectve dhange.

2.1.5.10. IntegrateBegin

This command is used to commence gnaion
of a change into the project baseline.

Whether a pysical copy of the baseline is used,
or a logical cop using links, is controlled by the
project configuration ile. The change is then
applied to this cop

The integrator must then issueild and test com-
mands as appropriate. This is not automated as
some integrator tasks may be required in and
around these commands.

2.1.5.11. IntegrateBegin Undo

This command is used to return a change to the
integration queue, without prejudice. No reason
need be gien.

This is usually done when a particularly important
change is in the queue, and the currengnation
is expected to taka bng time.

2.1.5.12. IntegratePass

This command is used to notify @ie that the
change being integrated is acceptable.

The current baseline is replaced with the gnte
tion copy, and the history is updated.

2.1.5.13. IntegrateFail

This command is used to notify Aegis that an
integration is unacceptable, usually because it
failed to huild or test in some ay, or ometimes
because the integrator found a deficienc

A file containing @rief summary of the problems
must be gien, and the summary will be included
in the change' history.

The change will be returned to theing deel-
opedstate for further wrk. Theintegration coy

of the baseline is deleted, leaving the original
baseline unchanged.

It is not the responsibility of gnintegrator to ix
a defectve dange, or een diagnose what the
defect may be.

Page 12 (bl/lib/en/user-guide/c7.2.s0) Peter Miller

Aegis

2.2. Philosoply

The philosopl is ample, and that makes some of
the implementation complex.

* When a change is in th®eing deelopedstate,
the aegis program is a\g#oper’s tool. Its pur-
pose is to mak it as asy for a decloper to
develop changes as possible.

* When a change lees (or attempts to lea) the
being deelopedstate, the aegis program is pro-
tecting the project baseline, and does nitgo
malke the deeloper happ.

» The agis program attempts to adhere to the
UNIX minimalist philosopl. Least unnecessary
output, least command line length, least depen-
dence orspecific3rd party tools.

* No overlap in functionality of cooperating tools.
(I.e. no internal bild mechanism, no internal his-
tory mechanism, etc.)

2.2.1. Deelopment

During the deelopment of a change, the gie
program exists to help thedoper. It helps him
navigate around his change and the project, it
copies file for him, and keeps track of therv
sions. Itcan @en tell him what changes he has
made.

2.2.2. Pst Derelopment

When a change has left the "beingveleped”
state, or when it is attempting to Weathat state,

the aegis program ceases to attempt to help the

developer and proceeds to defend the project
baseline. Thenodel used by aegis states that "the
baseline abays works", and aegis attempts to
guarantee this.

2.2.3. Minimalism

The idea of minimalism is to help the user olt.
is the intention that the aegis program caorkw
out unstated command line options for itself, in

cases where it is "safe" to do so. This means a

number of defaulting mechanisms, all designed to
help the user.

2.2.4. Oerlap

It was very tempting while writing the gis pro-
gram to hae it grow and cover source control and
dependenc maintenance roles.Unfortunately,
this would hae neant that the userauld have
been trapped with whater the aegis program
provided, and the aegis program is already plenty
big. To add this functionality would heae dverted

Peter Miller

(bl/lib/en/user-guide/c7.5.s0)

UserGuide

effort, resulting in an inferior result. It would also
have \iolated the underlyingnix philosoply.

2.2.5. DesigrGoals

A number of specif ideas molded the shape of
the aegis program. These include:

The uNix philosoply of writing small tools for
specifc tasks with little or no erlap. Tools

should be written with thexpectation of use in
pipes or scripts, or other combinations.

» Stay out of the vay. If it is possible to let a
project do whateer it likes, write the code to let
it. It is not possible to anticipateen a fraction
of the applications of a software tool.

» People. Thestaf using agis should be in
chage of the deelopment processThey should
not feel that some machine isvigig them orders.

» Users arer’psychic. Feedbacknust be clear
accurate and appropriate.

Page 13

User Guide

2.3. Security

Access to project data is controlled by thex
group mechanismThe group may be selected as
suitable for your project, as may the umask.

All work done by deslopers (build, diference,
etc) is all with a defult group of the projed’
group, irrespecte d the usess default group.
Directories (when BSD semantics anesitable)
are all created so that their contentsadéfto the
correct group. This ensures that veewers and
integrators are able to examine the change.

Other UNIX users not in the projest'goup may
be ecluded, or not, by the appropriate setting of
the project umask. This umask is used by all
Aegis actions, assuring appropriate aief
behaviour.

A second aspect of security is to ensure that
developers are unable to deliberately deeei
Aegis. Shouldthe fles be tampered with at yan
later date, Aegis will notice.

2.4. Scalability

How big can a project get before Aegis ckeR
There are a huge number of variables in this ques-
tion.

The most obvious bottleneck is the grator An
artificial "big project” eample: Assume that the
aveage integration tads an hour to build and test.
A full-time integrator could be expected to get 7
or 8 of these done per day (this was the oleskrv
aveage on one project the authoasvirvolved
in). Assumethat the gerage time for a desloper
to develop a change is twwweeks; a figure recom-
mended by mantext books as the most you can
afford to throw away. Thesetwo assumptions
mean that for this "big project" Aé can cope
with 70 to 80 deelopers, before ingrations
become a bottleneck.

The more serious bottle neck is the depengenc
maintenance toolSeventy developers can churn
out a staggering volume of codé#.takes a ery
long time to vade through the file times and the
rules, just to id the one or tw files which
changed. Thigan easily push the integrateild
time past the one hour markDevelopers also
become very ecal when build times are this long.

Page 14 (bl/lib/enfuser-guide/c1.3.50)

Aegis

Peter Miller

Aegis

2.5. When(not) to use Aegis

The aegis program is not a silver bullet; it will not
solve dl of your problems. Aegis is suitable for
some kinds of projects, useful for others, and use-
less for a fer.

The software deslopment process embodied by
Aegis has the following attributes:

» Each change set is applied atomically.

» Each change set mustildl successfully before
it will be accepted. (This can be trivial, if
desired.)

» Each change set must test successfully before it
will be accepted. (This can be disabled, if
desired.)

» Each change set must pass a pedewnebefore
it will be accepted. (This can be a rubber
stamp, if desired.)

The most dfficult thing about Agis program is
that it takes managementybin. It takes effort to
corvince man people that the model used by

agyis has benefits, and you need management

backing you up when some person comes along
with a way of deeloping software "without the
extra work" imposed by the model used byghe

2.5.1. Building

If the source code to your softwe product
doesnt build, it isn’t a product. Havever, many
software shops commit changes to their repository
without preconditions, and then do a dailyilth

(or worse, weekly). The problem here is that
"pollution” by defectve dcanges is alreadyn
your pioductbefore it is detectedAegis will not

let it be committed in the first place.

If your product is entirely composed of scripts or
HTML, you can mak the build step completely

trivial: "exit 0" is usually used for this purpose.
Thus, this requirement, while usually highly
desirable, may bevaided if desired.

2.5.2. Testing

There is extra up-front erk: writing tests. The

win is that the tests hang around fare catching
minor and major slips before ynbecome embar
rassing "features” in a released produeteven-

tion is cheaper than cure in this case, the tests
save work dawvn the track. See thestingchapter

for more information.

Peter Miller

(bl/lib/en/user-guide/c7.4.s0)

UserGuide

2.5.3. Reiewing

Code reiews of some sort are normal in most
software houses. Often, unfortunatetiyne pres-
sures or other political pressures mean that code
reviews manage not to happeivet the literature
repeatedly cites véews as one of the most impor
tant factors in removing defects before yheach
your code repository Aeds requires a code
review before it will commit code into your prod-
uct; aguin, the idea is to reme defectsbefore
they pollute the product.

Page 15

User Guide

2.6. Further Work

The Aegis program is far frominfished. Anum-
ber of features are known to be lacking.

At the date of this writing, Aegis is being
actively supported and impwed.

2.6.1. CodeCoverage Tool

It would be ‘ery helpful if a code oeerage tool
could be used to analyze tests included with
changes to ensure that the tests actuakycesed
the lines of code changed in the change.

Another use of the code waage tool would be to
select regression tests based on the objmd f
recompiled by a change, and thosgression
tests which ercise those files.

While there is fre@are C code ceerage tool
available, based on GNU C, the inteing and
semantics still need more thought.

Note: A fairly good approximation is already
awailable using the-suggest option of theaef(1)
command. lworks on the correlation of sources
file versus tests in theasious change setsSee
aef(1) for more information.

2.6.2. Vrtual File System

There is almost sfitient information in the
Aegis data base to create a virtudé fsystem,
overlaying the deelopment directory atop the
baseliné. This could be implemented similarly to
automounters, intercepting file system operations
by pretending to be an NFS servMary com-
mercial CASE products provide such a facility.

Such a virtual file system has a humber ofaadv
tages: you don’'need such a capable DMTor
starters; it only needs the dynamic include depen-
dencies, and does not need a search®péibc-
ond, may horrible and dumb compilers, notably
FORTRAN and "“fourth" GLs, dont’ have ade-
guate include semanticsyalaying the tvo direc-
tories male this much easier to deal withMany
graphical tools, such asibble chart drawers, etc,
when thg do actually hare include files, hee o
command line specifiable search path.

4Reminiscent of Sug’ TFS, but not the same.
Similar to AT&T's D-FS. Similarto TeamNet.
Similar to ClearCase, but |asnt thinking of the
time-travel aspects which theimplement.

SDiscussed in theDependency Maintenance
Tool chapter.

8 There are other ways, discussed inTis and
Trapschapter.

Page 16

(bl/lib/en/user-guide/c2.0.s0)

Aegis

The disadvantage is that this adds sigaiit
complity to an already lge program. Also,
implementation is limited to NFS capable sys-
tems, or wuld hare © be ewitten for a \ariety

of other systems. The semantics of interactions
between the daemon and other Aegis commands,
while clearly specifiable, are challenging to
implement. Performanceould also be a sigmif
cant factor.

The question is "is it really necessary?" If the job
can be done without it, does the effort of writing
such a beast result in significant prodvityi
gans?

The addition of thereate_symlinks_before_build
field to the project configuration file has greatly
reduced the need for this functionalittdoweve,

it does not provide copy-on-write semantics, nor
automaticaecpfunctionality; which a virtualife
system could do.

Peter Miller

Aegis

3. TheChange D&elopment Cycle

As a change to a project isvéped using Agis,

it passes through eeral states. Each state is
characterized by d#rent quality requirements,
different sets of applicable s commands, and
different responsibilities for the peoplevatved.

These people may bevitied into four catgories:
developers, rgiewers, integrators and administra-
tors. Eachhas different responsibilities, duties

and permissions; although one person may belong

to more than one cajery, depending on ho a
project is administered.

This chapter looks at each of these gaties, by
way of an &xample project undgping its frst
four changes. This example will bexagnined
from the perspeacte d each category of people in
the following sections.

There are six hypothetical users in thamaple:
the deelopers are Pat, Jan and Sam; thaesgers
are Robyn and Jan; the igtator is Isa; and the
administrator is Ale’. There need not ka keen
this maly people iwvolved, but it keeps things
slightly cleaner for this example.

The project is called ¥ample". Itimplements a
very simple calculator Mary features important
to a quality product are missing, checking for
divide-by-zero for rample. Thesehave keen
omitted for brevity.

"The names are deliberately gendeutral.
Finding such a name starting with "I" is not easy!

Peter Miller (bl/lib/en/user-guide/c2.0.s0)

UserGuide

Page 17

User Guide Aegis

3.1. TheDeveloper

The deeloper role is the coabté. This is where ne software is written, and bugs argdd. Thisexam-
ple shows only the addition of weunctionality but usually a change will include moidiftions of &isting
code, similar to bug-fixing activity.

3.1.1. Bebre You Start

Have you configured your account to usegd&? Sedhe User Setugsection of theTips and Taps chapter
for how to do his.

3.1.2. TheFirst Change

While the units of change, unorigingligre called "changes”, this also applies to the start of a project - a
change to nothing, if you l&k Thedeveloper of this first change will be Pat.

First, Pat has been told by the project administrator that the change has been tteatédex created
this change will be detailed in the "Administrator" section, later in this chaptrthen acquires the
change and starts work.

pat% aedb -l -p example.1.0
Project "example.1.0"

List of Changes
Change State Description
10 awaiting_ Create initial skeleton.

development

pat% aedb example.1.0 10

aegis: project "example.1.0": change 10: development directory "/u/pat/
example.1.0.C010"

aegis: project "example.1.0": change 10: user "pat" has begun development

pat% aecd

aegis: project "example.1.0": change 10: /u/pat/example.1.0.C010

pat%

At this point Aegis has created avdiepment directory for the change and Pat has changed directory to the
development directory.

Five files will be created by this change.

pat% aenf aegis.conf Howto.cook gram.y lex.I main.c

aegis: project "example.1.0": change 10: file "Howto.cook" added
aegis: project "example.1.0": change 10: file "aegis.conf" added
aegis: project "example.1.0": change 10: file "gram.y" added
aegis: project "example.1.0": change 10: file "lex.|" added

aegis: project "example.1.0": change 10: file "main.c" added
pat%

The contents of thaegis.confile will not be described in this section, mostly because it is a rather com-
plex subject; so compleit requires four chapters to describe: History Tool chapter the Dependency
Maintenance dol chapterthe Difference dolschapter and th€roject Attrituteschapter The contents of

the Howto.cookfile will not be described in this section, as it iseed in theDependency Maintenance
Tool chapter.

The file main.cwill have been created by Aegis as an emjity. fPat edits it to look like this

8| thought this expression was fairly common English usage, until | had a duéry Coal Face" is an
expression meaning "where theal work is done" in reference to old-style coal mining which was hard, tiring,
hot, very dangerous, and bad for your heal@énéf you were luck enough not to be killed. It was a 14-hour
per day job, and you alked to and from work in the darkvem in summer Unlike the mine owners, who rode
expensve horses and sasunlight most days of the week.

® The default directory in which to placevnéevdopment directories is configurable for each user.

Page 18 (bl/lib/en/user-guide/c2.1.s0) Peter Miller

Aegis UserGuide

#include <stdio.h>

static void
usage()
{
fprintf(stderr, "usage: example\n");
exit(1);
}
void
main(argc, argv)
int argc;
char **argv;
{
if (argc != 1)
usage();
yyparse();
exit(0);
}

The fle gram.ydescribes the grammar accepted by the calculdtbis file was also created empty by
Aegis, and Pat edits it to look &khis:

%token DOUBLE
%token NAME

%union
{
int Iv_int;
double Iv_double;
}

%type <lv_double> DOUBLE expr
%type <Iv_int> NAME

Yleft '+ -
Y%left >/’
%right UNARY

%%

Peter Miller (bl/lib/en/user-guide/c2.1.s0) Page 19

User Guide Aegis

example
D F e mpty*/
| e xample command '\n’
{ vy yerrflag = 0; fflush(stderr); fflush(stdout); }
command
. e xpr
{ p rintf("%g\n", $1); }
| e rror
expr
: DOUBLE
{$$ =81}
| * Cexpry
{$$ =82}
| * - expr
%prec UNARY
{$$ =- 82/}
| e xpr ™ expr
{$$=9%1*% 3;}
| e xpr’l" expr
{$$=9%1/8% 3;}

| e xpr’+ expr
{$6=9%1+ %3}
| e xpr’-" expr
{$$=9%1-89% 3;}

The file lex.l describes a simple lexical analyzét will be processed biex(1) to produce C code imple-
menting the lexical analyzeiThis kind of simple Iger is usually handcrafted, but using lealows the
example to be far smalleiPat edits the file to look li this:
%
#include <math.h>
#include <libaegis/gram.h>
9%}
%%
[\)+
[0-9]+(\.[0-9])?([eE][+-]?[0-9]+)? {
yylval.lv_double = atof(yytext);
return DOUBLE;

az] {
yylval.lv_int = yytext[0] - 'a’;
return NAME;

}
\n |
r eturn yytext[0];

Note hav the gram.hfile is included using thé&include < fi |l enane> form. Thisis very important
for builds in later changes, and is discussed more fully itVtieg Cooksection of thdbependency Main-
tenance Toothapter.

The files are processed, compiled and linked together usirmptimommand; this is known dmilding a
change. Thiss done through Aegis so that Aegis canwrbe success oaflure of the hild. (Build suc-

cess is a precondition for a change tovéetne being deelopedstate.) Thebuld command is in the
aegis.confile so vaguely described earlidn this example it will use th&eook1) command which in turn

will use theHowto.cookile, also alluded to earlieiThis file describes the commands and dependencies for
the various processing, compiling and linking.

Page 20 (bl/lib/en/user-guide/c2.1.s0) Peter Miller

Aegis UserGuide

pat% aeb

aegis: project "example.1.0": change 10: development build started

aegis: cook -b Howto.cook project=example.1.0 change=10
version=1.0.C010 -nl

cook: yacc -d gram.y

cook: mv y.tab.c gram.c

cook: mv y.tab.h gram.h

cook: cc -I. -l/projects/example/branch.1./branchO/baseline -O -c gram.c

cook: lex lex.|

cook: mv lex.yy.c lex.c

cook: cc -I. -l/projects/example/branch.1/branch.0/baseline -O -c lex.c

cook: cc -I. -l/projects/example/baseline -O -c main.c

cook: cc -0 example gram.o lex.o main.o -Il -ly

aegis: project "example.1.0": change 10: development build complete

pat%

The example program is built, and Pat cowlehdry it out:

pat% example
1+ 2

3

"D

pat%

At this point the change is apparentigished. Thecommand to tell Aegis this is thievelop endcom-
mand:

pat% aede

aegis: project "example.1.0": change 10: no current 'aegis -DIFFerence’
registration

pat%

It didn’t work, because Aegis thinks youMeamssed the difference step.

The difference step is used to produce files useful foeweng changes, mostly in the form of context dif-
ference files between the project baseline and theafement directory Context differences allar review-
ers to see exactly what has changed, and net thdry to track them down and inevitably miss obscwre b
important edits to large or compiléles.

pat% aed

aegis: set +e; diff -c /dev/null /u/pat/example.1.0.C010/Howto.cook >
/u/pat/example.1.0.C010/Howto.cook,D; test $? -eq 0 -0 $? -eq 1

aegis: set +e; diff -c /dev/null /u/pat/example.1.0.C010/aegis.conf >
/u/pat/example.1.0.C010/aegis.conf,D; test $? -eq 0 -0 $? -eq 1

aegis: set +e; diff -c /dev/null /u/pat/example.1.0.C010/gram.y >
/u/pat/example.1.0.C010/gram.y,D; test $? -eq 0 -0 $? -eq 1

aegis: set +e; diff -c /dev/null /u/pat/example.1.0.C010/lex.| >
/u/pat/example.1.0.C010/lex.|,D; test $? -eq 0 -0 $? -eq 1

aegis: set +e; diff -c /dev/null /u/pat/example.1.0.C010/main.c >
/u/pat/example.1.0.C010/main.c,D; test $? -eq 0 -0 $? -eq 1

aegis: project "example.1.0": change 10: difference complete

pat%

Doing a difference for a mefile may appear a little pedantic, but when a change consists of tens of files, so
modifications of &isting files and some meg there is a temptation forviewers to use "more *,D" and thus
completely miss the mefiles if it were not for this pedanticisth

So that reiewers, and conscientious\a#opers, may locate and wedll of these differenceiles, the com-
mand

10This is especially true when you use a tool sucftas1) which gires a ®mplete file listing with the
inserts and deletes marked in the girar Thistool is also @ailable from the author of Aegis.

Peter Miller (bl/lib/en/user-guide/c2.1.s0) Page 21

User Guide Aegis

pat% more ‘find . -name "*,D" -print | sort’
...examines e#cdfile...
pat%

could be used, lheever this is a little too long winded for most users, and satumorealias doesxactly
this. Therds a similaraedlesslias for those who prefer thesg1) command.

So nav Pat is done, le§ try to sign of again:

pat% aede

aegis: project "example.1.0": change 10: no current 'aegis -Test’
registration

pat%

It didn’t work, again. Thistime Aegis is reminding Pat thateey change must be accompanied by at least
one test. This is so that the project team can bddmrifat all times that a projecovks'’. Making this a
precondition to leee the being deelopedstate means that aviewer can be sure that a changglds and
passes its tests before it carerebe eviewed. Rt adds the truant test:

pat% aent

aegis: project "example.1.0": change 10: file "test/00/t0001a.sh" new
test

pat%

The test file is in a weird place, effhis is because magrilavors of uNiX are slev at sarching directories,
and so Aegis limits itself to 100 tests per directoiyhatever the name, Pat edits the test file to loolelik
this:

#l/bin/sh

#

t est simple arithmetic
#

tmp=/tmp/$$

here='pwd*

if [$? -ne 0]; then exit 1; fi

fail()

{
echo FAILED 1>&2
cd $here
rm -rf $tmp
exit 1

}

pass()

{
cd $here
rm -rf $tmp
exit 0

}
trap "fail"12 3 15

mkdir $tmp

if [$? -ne 0]; then exit 1; fi
cd $tmp

if [$? -ne 0]; then fail; fi

11 As discussed in thelow Aegis Wrks chapter aegs has the objeate d ensuring that projects ahys
work, where "works" is defined as passing all tests in the prsjbaseline. Achange "works" if it passes all of
its accompanying tests.

Page 22 (bl/lib/en/user-guide/c2.1.s0) Peter Miller

Aegis UserGuide

#

with input like this

#

cat > test.in << 'foobar’
1

(24 -22)

-(4-7)

2 *2

10/2

4 + 2

10-3

foobar

if [$? -ne 0]; then fail; fi

#

t he output should look like this
#

cat > test.ok << 'foobar’

o0 WNPR

~

foobar
if [$? -ne 0]; then fail; fi

#

run the calculator

and see if the results match

#

$here/example < test.in > test.out
if [$? -ne 0 ; then fail; fi

diff test.ok test.out

if [$? -ne 0]; then fail; fi

#

t his much worked
#

pass

There are seral things to notice about this test file:

« It is a Bourne shell script. All testilés are Bourne shell scripts becausey tae the most portablt.
(Actually, Aegds likes test files not to bexecutable, it passes them to the Bourne shallietly
when running them.)

* It makes the assumption that the current directory is either thdopenent directory or the baseline.
This is \alid, aegis aliays runs tests this way; if you run one manyaltyu must tak care of this
yourself.

* It checks the exit status of each awérg command.It is essential thatven unexpected and impossible
failures are handled.

» A temporary directory is created for temporatgst It cannot be assumed that a test will be run from a
directory which is writable; it is also easier to clean up after strange errors, since you needwnly thro
the directory way, rather than track down individual temporailes. It mostly protects agjnst
rogue programs scrambling files in the current directory.

12portable for Agis’ point of view: Bourne shell is the most widelyatable shell. Of course, if you are
writing code to publish on USENET or for FTprtability of the tests will be important from theveper’s
point of viev also.

Peter Miller (bl/lib/en/user-guide/c2.1.s0) Page 23

User Guide Aegis

 Every test is self-contained. The test uses auxiliary files, byt @ not separate sourdée$ (figuring
where thg are when some are in a change and some are in the baseline can be a nightemsers).
wants an auxiliary file, it must construct the file itself, in a temporary directory.

» Two functions hae keen defined, one for success and onedibure. Bothforms remee the temporary
directory A test is defined as passing if it returns a 0 exit status, and failing if it returtisngn
else.

* Tests are treated just éikeny ather source file, and are subject to the same proddssy. may be altered
in another change, oven deleted later if thg are no longer useful.

The most important feature to note about this test, after ignoring all of the trappings, is that ttdipesn’
much you vouldn't do manually! To test this program manually you wouldefit up, just as the test does,
you would gve it some input, just as the test does, and yould:compare the output against yoxpecta-
tions of what it will do, just as the test does.

The difference with using this test script and doing it manually is that medbpeent contains man
iterations of the "bild, test,think, edit, build, test..." gcle. Aftera cuple of iterations, the manual testing,
the constant re-typing, becomewiglusly unegonomic. Usinga shell script is more éfcient, doesr’for-
get to test things lateand is preserved for posterity (i.e. adds to the regression test suite).

This eficieng is especially evident when using commatidgich as

pat% aeb && aet ; vi aegis.log
pat% laeb
pat%

It is possible to talk to the shell extremely rarehyd then only to re-issue the same command, usingria w
pattern such as this.

As you hae dready guessed, Patwauns the test lig this:

pat% aet

aegis: sh /u/pat/example.1.0.C010/test/00/t0001a.sh

aegis: project "example.1.0": change 10: test "test/00/t0001a.sh"
passed

aegis: project "example.1.0": change 10: passed 1 test

pat%

Finally, Pat has built the change, prepared it for revdad tested it. It is ne ready for sign off.

pat% aede

aegis: project "example.1.0": change 10: no current 'aegis -Build’
registration

pat%

Say what? The problem is that the usaeftcanceled the previous buildgistration. Thiswvas because
Aegis is decoupled from the dependgmoaintenance toolcpokin this case), and thus has naywof

knowing whether or not the mefile in the change auld affect the success or failure of@lt'®. All that

is required is to re-build, re-test, re-difference (yes, the test gets differenced, too) and sign off.

3 This is acshspecific example, unlémost others.

14 Example: in addition to thexecutable file "example" skun here, the build may also produce an amehi
file of the projecs ource for &port. Theaddition of one moreilé may push the size of this are@iteyond a
size limit; the build would thus fail because of the addition of a test.

Page 24 (bl/lib/en/user-guide/c2.1.s0) Peter Miller

Aegis

pat% aeb

aegis: logging to "/u/pat/example.1.0.C010/aegis.log"

aegis: project "example.1.0": change 10: development build started

aegis: cook -b Howto.cook project=example.1.0 change=10
version=1.0.C001 -nl

cook: "all" is up-to-date

aegis: project "example.1.0": change 10: development build complete

pat% aet

aegis: logging to "/u/pat/example.1.0.C010/aegis.log"

aegis: sh /u/pat/example..1.0.C010/test/00/t0001a.sh

aegis: project "example.1.0": change 10: test "test/00/t0001a.sh"
passed

aegis: project "example.1.0": change 10: passed 1 test

pat% aed

aegis: logging to "/u/pat/example.1.0.C010/aegis.log"

aegis: set +e; diff -c /dev/null /u/pat/example.1.0.C010/test/00/
t0001a.sh > /u/pat/example.1.0.C010/test/00/t0001a.sh,D; test
$?-eq0-0%$?-eql

aegis: project "example.1.0": change 10: difference complete

pat% aede

aegis: sh /usr/local/lib/aegis/de.sh example.1.0 10 pat

aegis: project "example.1.0": change 10: development completed

pat%

UserGuide

The change is moready to be ndewed. Thissection is about delopers, so we will hae © leare tis
change at this point in its historfsfome time in the né day or so Pat reagss dectronic mail that this
change has passedviev, and another later to say that it passedgrdagon. Rt is nav free to deelop

another change, possibly for a different project.

3.1.3. TheSecond Change

The second changeas created because someone wanted to name input and output files on the command

line, and called the absence of this featura@ BVhenlan arwed for work, and lists the changesaiting

development, the following list appeared:

jan% aedb -l -p example.1.0
Project "example.1.0"

List of Changes
Change State Description
11 awaiting_ Add input and output file names to the
development command line.
12 awaiting_ add variables
development
13 awaiting_ add powers

development
jan%

The first on the list is chosen.

jan% aedb -c 11 -p example.1.0

aegis: project "example.1.0": change 11: development directory "/u/
jan/example.1.0.C011"

aegis: project "example.1.0": change 11: user "jan" has begun
development

jan% aecd

aegis: project "example.1.0": change 11: /u/jan/example.002

jan%

The best way to get details about a change is to used the "change details" listing.

Peter Miller (bl/lib/en/user-guide/c2.1.s0)

Page 25

User Guide Aegis

jan% ael cd
Project "example.1.0", Change 11
Change Details

NAME
Project "example.1.0", Change 11.
SUMMARY
file names on command line
DESCRIPTION
Optional input and output files may be specified on the
command line.
CAUSE
This change was caused by internal_bug.
STATE
This change is in 'being_developed’ state.
FILES
Change has no files.
HISTORY
What When Who Comment
new_change Fri Dec 11 alex
14:55:06 1992
develop_begin Mon Dec 14 jan
09:07:08 1992
jan%

Through one process or anothd&an determines that thmain.cfile is the one to be modf. Thisfile is
copied into the change:

jan% aecp main.c
aegis: project "example.1.0": change 11: file "main.c" copied
jan%

This file is nav extended to look lik this:

#include <stdio.h>

static void

usage()

{
fprintf(stderr, "usage: example [<infile> [<outfile>]J|\n");
exit(1);

}

void

main(argc, argv)
int argc;
char **argv;

{
char *in = 0;
char *out = 0;
int i

Page 26 (bl/lib/en/user-guide/c2.1.s0) Peter Miller

Aegis UserGuide

for (j = 1; j < argc; ++j)

{
char *arg = argv[j];
if (arg[0] == ")
usage();
if (lin)
in = arg;
else if (lout)
out = arg;
else
usage();
}
if (in && !'freopen(in, "r", stdin))
{
perror(in);
exit(1);
}
if (out && !freopen(out, "w", stdout))
{
perror(out);
exit(1);
}
yyparse();
exit(0);

}

A new test is also required,

jan% aent

aegis: project "example.1.0": change 11: file "test/00/t0002a.sh" new
test

jan%

which is edited to look li& this:

#l/bin/sh

#

t est command line arguments
#

tmp=/tmp/$$

here='pwd*

if [$? -ne 0]; then exit 1; fi

fail()

{
echo FAILED 1>&2
cd $here
rm -rf $tmp
exit 1

}

pass()

{
cd $here
rm -rf $tmp
exit 0

}

trap "fail"12 3 15

Peter Miller (bl/lib/en/user-guide/c2.1.s0) Page 27

User Guide Aegis

mkdir $tmp

if [$? -ne 0]; then exit 1; fi
cd $tmp

if [$? -ne 0]; then fail; fi

#

with input like this

#

cat > test.in << 'foobar’
1

(24 - 22)

-(4-7)

2 *2

10/2

4 + 2

10-3

foobar

if [$? -ne 0 ; then fail; fi

#

t he output should look like this
#

cat > test.ok << 'foobar’

OO WN PP

~

foobar
if [$? -ne 0]; then fail; fi

r un the calculator
and see if the results match

(Use /dev/null for input in case input redirect fails;

#
#
#
#
#
don't want the test to hang!)

H*

$here/example test.in test.out < /dev/null

if [$? -ne 0]; then fail; fi

diff test.ok test.out

if [$? -ne 0 ; then fail; fi

$here/example test.in < /dev/null > test.out.2
if [$? -ne 0]; then fail; fi

diff test.ok test.out.2

if [$? -ne 0]; then fail; fi

#

make sure complains about rubbish

on t he command line

#

$here/example -trash < test.in > test.out
if [$? -ne 1]; then fail; fi

#

t his much worked
#

pass

Now it is time for Jan to build and test the change. Through the magic of static documentationrkbis w
first time, and here is hoit goes:

Page 28 (bl/lib/en/user-guide/c2.1.s0) Peter Miller

Aegis UserGuide

jan% aeb

aegis: logging to "/u/pat/example.1.0.C011/aegis.log"

aegis: project "example.1.0": change 11: development build started

aegis: cook -b /projects/example/baseline/Howto.cook
project=example.1.0 change=11 version=1.0.C011 -nl

cook: cc -I. -l/projects/example/baseline -O -c main.c

cook: cc -0 example main.o /projects/example/baseline/gram.o
Iprojects/example/baseline/lex.o -1l -ly

aegis: project "example.1.0": change 11: development build complete

jan% aet

aegis: logging to "/u/pat/example.1.0.C011/aegis.log"

aegis: sh /u/jan/example.1.0.C011/test/00/t0002a.sh

aegis: project "example.1.0e": change 11: test "test/00/t0002a.sh"
passed

aegis: project "example.1.0": change 11: passed 1 test

jan%

All that remains if to difference the change and sign off.

jan% aed

aegis: logging to "/u/pat/example.1.0.C011/aegis.log"

aegis: set +e; diff -c /projects/example/main.c /u/jan/
example.1.0.C011/main.c > /u/jan/example.1.0.C011/main.c,D; test $?
-eq0-0%$?-eql

aegis: project "example.1.0": change 11: difference complete

jan% aedmore

...examines the file...

jan%

Note hav the context difference shows exactly what has changed. Amdhaosign-off:

jan% aede

aegis: project "example.1.0": change 11: no current 'aegis -Test
-BaseLine’ registration

jan%

No, it wasnt enough. EBsts must not only pass against & Bkange, but must fail against the project base-
line. Thisis to establish, in the case of bixek, that the bug has been isolaedfixed. New functional-

ity will usually fail against the baseline, because the baselinedmit’(if it could, you wouldn't be alding

it". So,Jan needs to use a variant of #etcommand.

jan% aet -bl

aegis: sh /u/jan/example.1.0.C011/test/00/t0002a.sh

usage: example

FAILED

aegis: project "example.1.0": change 11: test "test/00/t0002a.sh" on
baseline failed (as it should)

aegis: project "example.1.0": change 11: passed 1 test

jan%

Running the regression tests is also a good idea

jan% aet -reg

aegis: logging to "/u/pat/example.1.0.C011/aegis.log"

aegis: sh /projects/example/baseline/test/00/t0001a.sh

aegis: project "example.1.0": change 11: test "test/00/t0001a.sh"
passed

aegis: project "example.1.0": change 11: passed 1 test

jan%

Now Aegs will be satisfied

jan% aede

aegis: sh /usr/local/lib/aegis/aegis/de.sh example.1.0 11 jan
aegis: project "example.1.0": change 11: development completed
jan%

Peter Miller (bl/lib/en/user-guide/c2.1.s0) Page 29

User Guide Aegis

Like Pat in the change before, Jan will rageamail that this change passediesv, and later that it passed
integration.

3.1.4. TheThird and Fourth Changes

This section will shey two people performing te changes, one each. The twist is thatthavea file in
common.

First Sam looks for a change to work on and starts fthiis:

sam% aedb -
Project "example.1.0"

List of Changes
Change State Description
12 awaiting_ add powers
development
13 awaiting_ add variables

development

sam% aedb 12

aegis: project "example.1.0": change 12: development directory "/u/
sam/example.1.0.C012"

aegis: project "example.1.0": change 12: user "sam" has begun
development

sam% aecd

aegis: project "example.1.0": change 12: /u/sam/example.1.0.C012

sam%

A little sniffing around reeals that only thgram.ygrammar file needs to be altered, so it is copied into the
change.

sam% aecp gram.y
aegis: project "example.1.0": change 12: file "gram.y" copied
sam%

The grammar file is changed to lookdikis:

%token DOUBLE
%token NAME

%union

{
double Iv_double;
int Iv_int;

h

%type <lv_double> DOUBLE expr
%type <Iv_int> NAME

Yoleft '+ '’

Yoleft * '/’

Y%right ™

%right UNARY

%%
example
C[F e mpty*
| e xample command \n’
{ vy yerrflag = 0; fflush(stderr); fflush(stdout); }

Page 30 (bl/lib/en/user-guide/c2.1.s0) Peter Miller

Aegis

The changes are very small. Sam checks tceraate using the difference command:

command
© e xpr
{ p rintf("%g\n", $1); }
| e rror
expr
: DOUBLE
| * Cexpr)
{$$=8%2}
| * - expr
%prec UNARY
{ $$ = - $2;}
| e xpr™ expr
{ $$ = p ow($1, $3); }
| e xpr ™ expr
{$$=9%1*9% 3;}
| e xpr'l" expr
{$$=9%1/9% 3;}
| e xpr '+ expr
{$$ =91 +$%3}
| e xpr’-" expr
{$$=9%1-9% 3;}

sam% aed
aegis: logging to "/u/sam/example.1.0.C012/aegis.log"
aegis: set +e; diff -c /projects/example/baseline/gram.y /u/sam/

example.1.0.C012/gram.y > /u/sam/example.1.0.C012/gram.y,D; test $?

-eq0-0%?-eql
aegis: project "example.1.0": change 12: difference complete
sam% aedmore
...examines the file...
sam%

The difference file looks lik this

*** [projects/example/baseline/gram.y
--- Ju/sam/example.1.0.C012/gram.y

*kkkkkkkkkkkkkk

*kk 1 5 Kkkk
’

1,6 -
%
#include <stdio.h>
+ #include <math.h>
%}
%token DOUBLE
%token NAME

*kkkkkkkkkkkkkk

*kk 13,18 *kkk
--- 14,20 ----
%type <Iv_int> NAME
Y%left '+ '’
Yoleft >/’
+ Y%ight ™
%right UNARY
%%
example

Peter Miller (bl/lib/en/user-guide/c2.1.s0)

UserGuide

Page 31

User Guide Aegis

Fkkkkkkkkkkkkkk

*kk 32 37 *kkk

- 34,41 -
| * - expr
%prec UNARY
{ $$ = - $2;}
+ | expr™ expr
+ { $%=pow($1, $3);}
| e xpr™* expr
{$$=9%1*9% 3;}
| e xpr'l" expr

These are the differences Sam expected to see.
At this point Sam creates a test. All good softwanesldpers create the tests first, dottiey?

sam% aent

aegis: project "example.1.0": change 12: file "test/00/t0003a.sh" new
test

sam%

The test is created empgnd Sam edit it to look lik this:

here=‘pwd’

if test $? -ne 0 ; then exit 1; fi
tmp=/tmp/$$

mkdir $tmp

if test $? -ne 0 ; then exit 1; fi
cd $tmp

if test $? -ne 0 ; then exit 1; fi

fail()
{
echo FAILED 1>&2
cd $here
chmod u+w ‘find $tmp -type d -print'
rm -rf $tmp
exit 1
}
pass()
{
cd $here
chmod u+w ‘find $tmp -type d -print’
rm -rf $tmp
exit 0
}

trap "fail"12 3 15

cat > test.in <<’end’
5370

4~ 0.5

27 " (1/3)

end

if test $? -ne 0 ; then fall; fi

cat > test.ok << 'end’

1

2

3

end

if test $? -ne 0 ; then fall; fi

Page 32 (bl/lib/en/user-guide/c2.1.s0) Peter Miller

Aegis

Everything is readyNow the change can be built and tested, just tile earlier changes.

$here/example test.in < /dev/null > test.out 2>&1
if test $? -ne 0 ; then fail; fi

diff test.ok test.out
if test $? -ne 0 ; then fail; fi

$here/example test.in test.out.2 < /dev/null
if test $? -ne 0 ; then fall; fi

diff test.ok test.out.2
if test $? -ne 0 ; then fail; fi

it p robably worked
pass

sam% aeb

aegis: logging to "/u/sam/example.1.0.C012/aegis.log"

aegis: project "examplel1.0": change 12: development build started

aegis: cook -b /projects/example/baseline/Howto.cook
project=example.1.0 change=12 version=1.0.C012 -nl

cook: yacc -d gram.y

cook: mv y.tab.c gram.c

cook: mv y.tab.h gram.h

cook: cc -I. -I/projects/example/baseline -O -c gram.c

cook: cc -I. -l/projects/example/baseline -O -c /projects/
example/baseline/lex.c

cook: cc -0 example gram.o lex.o /projects/example/baseline/
main.o -ll -ly -Im

aegis: project "example™: change 3: development build complete

sam%

UserGuide

Notice hav the yacc run producesgaam.hwhich logically irvalidates thdex.oin the baseline, and so the
lex.cfile in the baseline is recompiled, using gram.hinclude file from the deslopment directoryleav-
ing a newlex.oin the deelopment directory This is the reason for the use of

#include < fil enane>

directives, rather then the double quote form.

Now the change is tested.

sam% aet

aegis: logging to "/u/sam/example.1.0.C012/aegis.log"

aegis: sh /u/sam/example.1.0.C012/test/00/t0003a.sh

aegis: project "example.1.0": change 12: test "test/00/t0003a.sh"
passed

aegis: project "example.1.0": change 12: passed 1 test

sam%

The change must also be tested against the baselinagilansiamknows this, and does it here.

Peter Miller (bl/lib/en/user-guide/c2.1.s0)

Page 33

User Guide Aegis

sam% aet -bl

aegis: logging to "/u/sam/example.1.0.C012/aegis.log"

aegis: sh /u/sam/example.1.0.C012/test/00/t0003a.sh

1,3cl,6

<1

<2

<3

> syntax error

> 53

> syntax error

> 4

> syntax error

> 27

FAILED

aegis: project "example.1.0": change 12: test "test/00/t0003a.sh" on
baseline failed (as it should)

aegis: project "example.1.0": change 12: passed 1 test

sam%

Running the regression tests is also a good idea.

sam% aet -reg

aegis: logging to "/u/sam/example.1.0.C012/aegis.log"

aegis: sh /projects/example/baseline/test/00/t0001a.sh

aegis: project "example.1.0": change 12: test "test/00/t0001a.sh"
passed

aegis: sh /projects/example/baseline/test/00/t0002a.sh

aegis: project "example.1.0": change 12: test "test/00/t0002a.sh"
passed

aegis: project "example.1.0": change 12: passed 2 tests

sam%

A this point Sam has just enough time to get to the lunchtime aerobics class irnf twstadn room.

Earlier the same dafpat arrved for work a little after Sam, and also looked for a change to work on.

pat% aedb -I
Project "example.1.0"

List of Changes
Change State Description
13 awaiting_ add variables
development
pat%

With such a wide choice, Pat selected change 13.

pat% aedb 13

aegis: project "example.1.0": change 13: development directory "/u/
pat/example.1.0.C013"

aegis: project "example.1.0": change 13: user "pat" has begun
development

pat% aecd

aegis: project "example.1.0": change 13: /u/pat/example.1.0.C013

pat%

To get more information about the change, Pat then uses the "change details" listing:

pat% ael cd
Project "example.1.0", Change 13
Change Details

Page 34 (bl/lib/en/user-guide/c2.1.s0) Peter Miller

Aegis UserGuide

NAME
Project "example.1.0", Change 13.
SUMMARY
add variables
DESCRIPTION
Enhance the grammar to allow variables. Only single
letter variable names are required.
CAUSE
This change was caused by internal_enhancement.
STATE
This change is in 'being_developed’ state.
FILES
This change has no files.
HISTORY
What When Who Comment
new_change Mon Dec 14 alex
13:08:52 1992
develop_begin Tue Dec 15 pat
13:38:26 1992
pat%

To add the wariables the grammar needs to be extended to understand them, aniilefoe remembering
and recalling the values of the variables needs to be added.

pat% aecp gram.y

aegis: project "example.1.0": change 13: file "gram.y" copied
pat% aenfvar.c

aegis: project "example.1.0": change 13: file "var.c" added
pat%

Notice hav Aegs raises no objection to both Sam and Pat having aafajpe gram.yfile. Resolvinghis
contention is the subject of this section.

Pa now dlits the grammar file.

pat% vi gram.y

...edit the file...

pat% aed

aegis: logging to "/u/pat/example.1.0.C013/aegis.log"

aegis: set +e; diff -c /projects/example/baseline/gram.y /u/pat/
example.1.0.C013/gram.y > /u/pat/example.1.0.C013/gram.y,D; test $?
-eq0-0%$?-eql

aegis: project "example.1.0": change 13: difference complete

pat%

The difference file looks lik this

hey, ©meone fill me in!...

The newvar.cfile was created empty by Aegis, and Pat edits it to loekiik:

static double memory[26];

Peter Miller (bl/lib/en/user-guide/c2.1.s0) Page 35

User Guide Aegis

void
assign(name, value)
int name;
double value;
{
memory[name] = value;
}
double
recall(name)
int name;
{
return memory[name];
}

Little remains except to build the change.

pat% aeb

aegis: logging to "/u/pat/example.1.0.C013/aegis.log"

aegis: cook -b /example.proj/baseline/Howto.cook
project=example.1.0 change=13 version=1.0.C013 -nl

cook: yacc -d gram.y

cook: mv y.tab.c gram.c

cook: mv y.tab.h gram.h

cook: cc -I. -l/projects/example/baseline -O -c gram.c

cook: cc -I. -l/projects/example/baseline -O -c /projects/
example/baseline/lex.c

cook: cc -I. -l/projects/example/baseline -O -c var.c

cook: cc -0 example gram.o lex.o /projects/example/baseline/
main.o var.o -ll -ly -Im

aegis: project "example.1.0": change 13: development build complete

pat%

A new test for the ne functionality is required and Pat creates one tiks.

here="pwd’

if test $? -ne 0 ; then exit 1; fi
tmp=/tmp/$$

mkdir $tmp

if test $? -ne 0 ; then exit 1; fi
cd $tmp

if test $? -ne 0 ; then exit 1; fi

fail()
{
echo FAILED 1>&2
cd $here
chmod u+w ‘find $tmp -type d -print’
rm -rf $tmp
exit 1
}
pass()
{
cd $here
chmod u+w ‘find $tmp -type d -print’
rm -rf $tmp
exit 0
}

trap “fail"12 3 15

Page 36 (bl/lib/en/user-guide/c2.1.s0) Peter Miller

Aegis UserGuide

cat > test.in <<’end’
a=1

a+ 1

c=a*40 +5
cl/(@a+4)

end

if test $? -ne 0 ; then fail; fi

cat > test.ok << 'end’

2

9

end

if test $? -ne 0 ; then fall; fi

$here/example test.in < /dev/null > test.out 2>&1
if test $? -ne 0 ; then fail; fi

diff test.ok test.out
if test $? -ne 0 ; then fail; fi

$here/example test.in test.out.2 < /dev/null
if test $? -ne 0 ; then fall; fi

diff test.ok test.out.2
if test $? -ne 0 ; then fail; fi

it p robably worked
pass

The nev files are then differenced:

pat% aed

aegis: logging to "/u/pat/example.1.0.C013/aegis.log"

aegis: set +e; diff -c /projects/example/baseline/gram.y /u/pat/
example.1.0.C013/gram.y > /u/pat/example.1.0.C013/gram.y,D; test $?
-eq0-0%$?-eql

aegis: set +e; diff -c /dev/null /u/pat/example.1.0.C013/test/00/
t0004a.sh > /u/pat/example.1.0.C013/test/00/t0004a.sh,D; test
$?7-eq0-0%?-eql

aegis: set +e; diff -c /dev/null /u/pat/example.1.0.C013/var.c > /u/
pat/example.1.0.C013/var.c,D; test $? -eq 0 -0 $? -eq 1

aegis: project "example.1.0": change 13: difference complete

pat%

Notice hav the difference for thgram.yfile is still current, and so is not run again.
The change is tested.

pat% aet

aegis: logging to "/u/pat/example.1.0.C013/aegis.log"

aegis: sh /u/pat/example.1.0.C013/test/00/t0001a.sh

aegis: project "example.1.0": change 13: test "test/00/t0004a.sh"
passed

aegis: project "example.1.0": change 13: passed 2 tests

pat%

The change is tested against the baseline.

Peter Miller (bl/lib/en/user-guide/c2.1.s0) Page 37

User Guide Aegis

pat% aet -bl

aegis: logging to "/u/pat/example.1.0.C013/aegis.log"

aegis: sh /u/pat/example.1.0.C013/test/00/t0001a.sh

1,2c1,4

< 2

<9

> syntax error

> syntax error

> syntax error

> syntax error

FAILED

aegis: project "example.1.0": change 13: test "test/00/t0004a.sh" on
baseline failed (as it should)

pat%

And the regression tests

pat% aet-reg

aegis: logging to "/u/pat/example.1.0.C013/aegis.log"

aegis: sh /projects/example/baseline/test/00/t0001a.sh

aegis: project "example.1.0": change 13: test "test/00/t0001a.sh"
passed

aegis: sh /projects/example/baseline/test/00/t0002a.sh

aegis: project "example.1.0": change 13: test "test/00/t0002a.sh"
passed

aegis: project "example.1.0": change 13: passed 2 tests

pat%

Note hav test 3 has not been run, inydiorm of testing. This is because test 3 is part of another change,
and is not yet integrated with the baseline.

All is finished for this change,

pat% aede

aegis: sh /usr/local/lib/aegis/de.sh example.1.0 13 pat

aegis: project "example.1.0": change 13: development completed
pat%

Anxious to get this change into the baselinat, iRw wanders down the hall in search of aieever, but
more of that in the next section.

Some time laterSan returns from aerobics feeling much imgeh All that is required for change 12 is to
do develop end, or is it?

sam% aede

aegis: project "example.1.0": change 12: file "gram.y" in baseline

has changed since last 'aegis -DIFFerence’ command
sam%

A little sleuthing on Sama’part with the Agis list command will reeal hav this came about. The way to
resole this problem is with the difference command, but the merge variant - this will mergentirase
line version, and Sam'dit together.

Page 38 (bl/lib/en/user-guide/c2.1.s0) Peter Miller

Aegis

sam% aem

aegis: logging to "/u/pat/example.1.0.C012/aegis.log"

aegis: co -u'l.1’ -p /projects/example/history/gram.y,v > /tmp/
aegis.14594

Iprojects/example/history/gram.y,v --> stdout revision 1.1 (unlocked)

aegis: (diff3 -e /projects/example/baseline/gram.y /tmp/
aegis.14594 /u/sam/example.003/gram.y | sed -e '/"'w$/d’
-e’'["g$/d’; echo’'l,$p’) | ed - /projects/example/
baseline/gram.y,B > /u/sam/example.003/gram.y

aegis: project "example.1.0": change 12: merge complete

aegis: project "example.1.0": change 12: file "gram.y" was out of
date and has been merged, see "gram.y,B" for original source

aegis: new 'aegis -Build’ required

sam%

UserGuide

This was caused by the conflict between change 13, whiclwismegrated, and change 12; both of which
are editing thgram.yfile. Samexamines thgram.yfile, and is satigd that it contains an accurate geer
of the edit done by change 13 and the edits for this change. The merged source fileddbiss lik

%

#include <stdio.h>
#include <math.h>
%}

%token DOUBLE
%token NAME

%union

{
double Iv_double;
int Iv_int;

h

%type <lv_double> DOUBLE expr
%type <Iv_int> NAME

Yoleft '+ '’

Yoleft > '/’

Y%right ™

%right UNARY

%%

example
C[F e mpty*
| e xample command \n’
{ vy yerrflag = 0; fflush(stderr); fflush(stdout); }
command
. e xpr
{ p rintf("%g\n", $1); }
| NAME '=" expr
{ assign($1, $3); }
| e rror
Peter Miller (bl/lib/en/user-guide/c2.1.s0)

Page 39

User Guide Aegis

expr
. DOUBLE
| NAME
{ e xtern double recall(); $$ = recall($1); }
| * Cexpr)
{$$=8%2}
| * - expr
%prec UNARY
{ $$ = - $2;}
| e xpr™ expr
{ $$ = p ow($1, $3); }
| e xpr™* expr
{$$=9%1*9% 3;}
| e xpr'l" expr
{$$=9%1/9% 3;}
| e xpr '+ expr
{$$ =91+ %3}
| e xpr’-" expr
{$$=9%1-% 3;}

The automatic mge worked because most such conflicts are actually working on logically separate por

tions of the le. Two dfferent areas of the grammar in this cakepractice, there is rarely a real conflict,
and it is usually small enough to detect fairly quickly.

Sam nev rebuilds:

sam% aeb

aegis: logging to "/u/sam/example.1.0.C012/aegis.log"

aegis: project "example.1.0": change 12: development build started

aegis: cook -b /projects/example/baseline/Howto.cook
project=example.1.0 change=12 version=1.0.C012 -nl

cook: rm gram.c

cook: rm gram.h

cook: yacc -d gram.y

cook: mv y.tab.c gram.c

cook: mv y.tab.h gram.h

cook: rm gram.o

cook: cc -I. -l/projects/example/baseline -O -¢c gram.c

cook: rm lex.o

cook: cc -I. -l/projects/example/baseline -O -c /projects/
example/baseline/lex.c

cook: rm example

cook: cc -0 example gram.o lex.o /projects/example/baseline/
main.o /projects/example/baseline/var.o -Il -ly -lm

aegis: project "example.1.0": change 12: development build complete

sam%

Notice hav the list of object files linkd has also adapted to the addition of another file in the baseline,
without ary extra work by Sam.

All that remains is to test the change again.

sam% aet

aegis: /bin/sh /u/sam/example.1.0.C012/test/00/t0003a.sh

aegis: project "example.1.0": change 12: test "test/00/t0003a.sh"
passed

aegis: project "example.1.0": change 12: passed 1 test

sam%

And test against the baseline,

Page 40 (bl/lib/en/user-guide/c2.1.s0) Peter Miller

Aegis UserGuide

sam% aet -bl

aegis: /bin/sh /u/sam/example.1.0.C012/test/00/t0003a.sh

1,3cl1,6

<1

< 2

<3

> syntax error

> 5.3

> syntax error

> 4

> syntax error

> 27

FAILED

aegis: project "example.1.0": change 12: test "test/00/t0003a.sh" on
baseline failed (as it should)

aegis: project "example.1.0": change 12: passed 1 test

sam%

Perform the regression tests, too. This is important for gederhange, to makare you didnt break the
functionality of the code you merged with.

sam% aet -reg

aegis: logging to "/u/sam/example.1.0.C012/aegis.log"

aegis: /bin/sh /projects/example/baseline/test/00/
t0001a.sh

aegis: project "example.1.0": change 12: test "test/00/t0001a.sh"
passed

aegis: /bin/sh /projects/example/baseline/test/00/
t0002a.sh

aegis: project "example.1.0": change 12: test "test/00/t0002a.sh"
passed

aegis: /bin/sh /projects/example/baseline/test/00/
t0004a.sh

aegis: project "example.1.0": change 12: test "test/00/t0004a.sh"
passed

aegis: project "example.1.0": change 12: passed 3 tests

sam%

All done, or are we?

sam% aede

aegis: project "example.1.0": change 12: no current 'aegis -Diff’
registration

sam%

The difference we did earliewhich resealed that we were out of date, does nowstie differences since
the two changes were merged, and possibly further edited.

sam% aed

aegis: logging to "/u/sam/example.1.0.C012/aegis.log"

aegis: set +e; diff /projects/example/baseline/gram.y /u/pat/
example.1.0.C012/gram.y > /u/pat/example.1.0.C012/gram.y,D;
test $? -le 1

aegis: project "example.1.0": change 12: difference complete

sam%

This time e@erything will run smoothly,

sam% aede
aegis: project "example.1.0": change 12: development completed
sam%

Some time soon Sam will regeiemail that this change passed reyiend later that it passed integration.

Within the scope of a limited example, yow&aeen most of what Aegis can ddo get a true feeling for
the program you need to try it in a similarly simple cagsu could esen try doing this example manually.

Peter Miller (bl/lib/en/user-guide/c2.1.s0) Page 41

User Guide Aegis

3.1.5. Deeloper Command Summary

Only a fav of the Aegis commandsvalable to deelopers hae been used in thexample. Theollowing
table (very tersely) describes the Aegis commands most usefuldomis.

Command Description

aeb Build

aeca ediChange Attributes
aecd ChangBirectory
aeclean Cleaa devdopment directory
aeclone copa whole change
aecp Cop File

aecpu Cop File Undo

aed Diference

aedb Deelop Begin

aedh Devdop Begin Undo
aede Deelop End

aedeu Declop End Undo
ael ListStuff

aenf Nev File

aenfu Nev File Undo

aent Nev Test

aentu Nev Test Undo

aerm Remee Fle

aermu Remee Fle Undo

aet Test

You will want to read the manual entries for all of these commaNdge that all Aegis commandsveaa
—Help option, which will give a esult very similar to the correspondintan(1l) output. Most Aegis com-
mands also ha a-List option, which usually lists interesting context sewmsitiformation.

Page 42 (bl/lib/en/user-guide/c2.2.s0) Peter Miller

Aegis UserGuide

3.2. TheReviewer

The role of a reiewer is to check another usemork. You are helped in this by Aegis, because changes
can neer reach thébeing eviewedstate without seeral preconditions:

» The change is known taitdd. You knaw that it compiled successfullgo here is no need to search for
syntax errors.

» The change has tests, and those tests been run, and ha passed.

This information allavs you to concentrate on implementation issues, completeness issues, and local stan-
dards issues.

To help the reiewer, a 2t of "comma D" files is\&ilable in the change #elopment directory Every file
which is to be added to the baseline, reeddrom the baseline, or changed in sonsg;was a correspond-
ing "comma D" file.

3.2.1. Bebre You Start
Have you configured your account to usegd&? Sedhe User Setugsection of theTips and Taps chapter
for how to do his.

3.2.2. TheFirst Change
Robyn finds out what changes axgilable for reviev by asking Aegis:

robyn% aerpass -l -p example.1.0

Project "example.1.0"

List of Changes
Change State Description

10 being_reviewed Place under Aegis
robyn%

Any of the abee changes could be reviewed, Robyn chooses the first.

robyn% aecd -p example.1.0 -c 10

aegis: project "example": change 1: /u/pat/example.1.0.C010
robyn% aedmore

...examines e#cdfile...

robyn%

The aedmorecommand walks the gelopment directory tree tarfd all of the "comma D" files, and dis-
plays them usinghorg1). Thereis a correspondingedlesdor those who prefer tHesg1) command.
Once the change has been reviewed and found acceptable, it is passed:

robyn% aerpass -p example.1.0 10

aegis: sh /usr/local/lib/aegis/rp.sh example.1.0 10 pat robyn
aegis: project "example.1.0": change 10: passed review
robyn%

Some time soon Isa will notice the email notification and commence integration of the change.

3.2.3. TheSecond Change
Most reviews hee the same pattern as the first.

Peter Miller (bl/lib/en/user-guide/c2.2.s0) Page 43

User Guide Aegis

robyn% aerpass -l -p example.1.0

Project "example.1.0"

List of Changes
Change State Description

11 being_reviewed file names on command line
robyn%

Always change directory to the chargyeevdopment directoryotherwise you will not be able towiew
the files.

robyn% aecd -p example.1.0 -c 11
aegis: project "example.1.0": change 11: /u/jan/example.1.0.C011
robyn%
Another useful way of finding out about a change is the "list change details" command, viz:

robyn% ael cd -p example.1.0 -c 11

Project "example.1.0", Change 11
Change Details

NAME
Project "example.1.0", Change 11.
SUMMARY
file names on command line
DESCRIPTION
Optional input and output files may be specified on
the command line.
CAUSE
This change was caused by internal_bug.
STATE
This change is in 'being_reviewed’ state.
FILES
Type Action Edit File Name
source modify 1.1 main.c
test create test/00/t0002a.sh
HISTORY
What When Who Comment
new_change Fri Dec 11 alex
14:55:06 1992
develop_begin Mon Dec 14 jan
09:07:08 1992
develop_end Mon Dec 14 jan
11:43:23 1992
robyn%

Once Robyn knows what the change is meant to be doing, the files are then examined:

robyn% aedmore
...examines e#cdfile...
robyn%

Page 44 (bl/lib/en/user-guide/c2.2.s0) Peter Miller

Aegis UserGuide

Once the change is found to be acceptable, it is passed:

robyn% aerpass -p example.1.0 11
aegis: sh /usr/local/lib/aegis/rp.sh example.1.0 11 jan robyn
aegis: project "example.1.0": change 11: passed review
robyn%
Some time soon Isa will notice the email notification and commence integration of the change.

The reviews of the third and fourth changes will not beegi here, because thare almost identical to the
other changes. If you want to kmdiow to fail a reviev, see theaerfail(1) manual entry.

3.2.4. Reiewer Command Summary

Only a fav of the Aegis commandsvailable to reviewers hae keen used in thisxample. Thefollowing
table (very tersely) describes the Aegis commands most useful to reviewers.

Command Description

aecd ChangBirectory
aerpass Reew Pass
aerpu Reiew Pass Undo
aerfil Review Fail

ael ListStuff

You will want to read the manual entries for all of these commaNdse that all Aegis commandsJeaa
—Help option, which will gve a esult very similar to the correspondingan(1) output. Most Aegis com-
mands also hee a—List option, which usually lists interesting context semsithformation.

Peter Miller (bl/lib/en/user-guide/c2.3.s0) Page 45

User Guide Aegis

3.3. Thelntegrator

This section shows what the integrator must do for each of the changes shown thdategegrator does
not hare te ability to alter aything in the change; if a change being integrated is dededtiis Ssmply
failed back to the desloper This documented example has no such failures, in ordeejp ik manageably
small.

3.3.1. Bebre You Start

Have you configured your account to usegd&? Sedhe User Setupsection of theTips and Taps chapter
for how to do his.

3.3.2. TheFirst Change

The first change of a project is often the trickiest, and thgnater is the last to kmo This example goes
smoothly and you may want to consider using the example project as a template.

The integrator for this example project is Isa. Isa knows there is a change readygi@atioriefrom the
notification which arrred by email.

isa% aeib -l -p example.1.0

Project "example.1.0"

List of Changes
Change State Description
10 awaiting_ Place under Aegis
integration

isa% aeib example.1.0 10

aegis: project "example.1.0": change 10: link baseline to integration
directory

aegis: project "example.1.0": change 10: apply change to integration
directory

aegis: project "example.1.0": change 10: integration has begun

isa%

The integrator must rebuild and retest each chafdpgs ensures that it was no quirk of theveeper's
environment which resulted in the success at thelggment stage.

isa% aeb

aegis: logging to "/projects/example/delta.001/aegis.log"

aegis: project "example.1.0": change 10: integration build started

aegis: cook -b Howto.cook project=example.1.0 change=10
version=1.0.D001 -nl

cook: yacc -d gram.y

cook: mv y.tab.c gram.c

cook: mv y.tab.h gram.h

cook: cc -I. -O -c gram.c

cook: lex lex.|

cook: mv lex.yy.c lex.c

cook: cc -I. -O -c lex.c

cook: cc -I. -O -c main.c

cook: cc -0 example gram.o lex.o main.o -l -ly

aegis: project "example.1.0": change 10: integration build complete

isa%

Notice hav the abee huild differed from the builds that were done while in beéng deelopedstate; the
extra baseline include is gone. This is because the integration directory will shortly bevthasedine,
and must be entirely internally consistent and seficeht.

You ae probably wondering whthis isnt al rolled into the one Agis command. It is not because there

may be some manual process to be performed after the build and before the test. This may be making a
command set-uid-root (as in the case of Aegis itself) or it may require some tinkering with the local oracle
or ingress database. Instructions for thegrator may be placed in the description field of the change

Page 46 (bl/lib/en/user-guide/c2.3.s0) Peter Miller

Aegis UserGuide

attributes.
The change is more-tested:

isa% aet

aegis: logging to "/projects/example/delta.001/aegis.log"

aegis: sh /project/example/delta.001/test/00/t0001a.sh

aegis: project "example": change 1: test “test/00/t0001a.sh"
passed

aegis: project "example": change 1: passed 1 test

isa%

The change tilds and tests. Once Isa is hgppith the change, perhaps after browsing the files, Isa then
passes the integration, causing the history files to be updated and the integration directory becomes the
baseline.

isa% aeipass

aegis: logging to "/projects/example/delta.001/aegis.log"

aegis: ci -u -m/dev/null -t/dev/null /projects/example/delta.001/
Howto.cook /projects/example/history/Howto.cook,v;
rcs -U /projects/example/history/Howto.cook,v

Iprojects/example/history/Howto.cook,v <--
Iprojects/example/delta.001/Howto.cook

initial revision: 1.1

done

RCS file: /projects/example/history/Howto.cook,v

done

aegis: rlog -r /projects/example/history/Howto.cook,v | awk
"["revision/ {print $2}' > /tmp/aegis.15309

...lots of similar RCS output...

aegis: project "example.1.0": change 10: remove development directory

aegis: sh /usr/local/lib/aegis/ip.sh example.1.0 10 pat robyn isa

aegis: project "example.1.0": change 10: integrate pass

isa%

All of the staf invdved, will receve email to say that the change has beergirteed. Thishotification is a

shell script, so USENET could be usefully used instead.

You should note that the gelopment directory has been deleted. It is expected that eaelople
ment directory will only contain files necessary tovalep the change.You should keep "precious'ilés
somewhere else.

3.3.3. TheOther Changes

There is no difference to integratingyanf the later changes. The integration process is very simple, as it is
a aut-down version of what the @goper does, without all the complexity.

Your project may elect to ka te integrator also monitor the quality of theieavs. Ananswer to "who
will watch the watchers" if you like.

It is also a good idea to rotate people out of the integrator position afterveetiks in a bsy project, this
is a very stressful positionfhe position of integrator gés a wique perspeacte © software quality but the
person also needs to be able to say "NO!" when a cruddy change comes along.

Peter Miller (bl/lib/en/user-guide/c2.3.s0) Page 47

User Guide Aegis

3.3.4. Integrator Command Summary

Only a fav of the Aegis commandsralable to integrators h& been used in thisxample. Theollowing
table (very tersely) describes the Aegis commands most useful to integrators.

Command Description

aeb Build

aecd ChangBirectory

aed Diference

aeib Intgrate Begin

aeilu Integrate Begin Undo
aeifall Integrate Falil

ael ListStuff

aet Test

aeipass Intgrate Pass

You will want to read the manual entries for all of these commaNdge that all Aegis commandsveaa
—Help option, which will gie a esult very similar to the correspondintan(1l) output. Most Aegis com-
mands also ha a-List option, which usually lists interesting context sewmsitiformation.

3.3.5. Minimum Integrations

The aegis --integrate-begincommand provides aminimum option which may be used foasous rea-
sons. Theterm minimum may be a bit counter intwit. One might think it means to thminimum
amount of work, haever it actually means use minimum of files from the baseline in populating the
delta directory This normally leads to actuallyuldding everything in the project from sources and, as
such, might be considered the most robust of builds.

Note that ap change which remes a fle, whether byaermor aemy results in an impliciminimum inte-
gration. Thigs intended to ensure nothing in the project references thevedtfile.

A project may adopt a poljcthat a product release should be based on a minimugratits. Sucta pol-
icy may be a reflection of local confidence, or lack therof, in the projects DMT (Depgniiictenance
Tool) or kuild system. Or it may be based on a validation process wishing te angtkple statement on
how the released package was produced.

Another more transient, reason a to require a minimungiatiion might be when upgrading a third party
library, compiler or maybeen OS kvd. Any of these gents would signal the need for a minimum inte-
gration to ensureverything is rebuilt using the meresources.

The cost of aninimum integration \aries according to type and size of the projéct. very large projects,
especially those building lge numbers of binaries, the cost can bgdarHavever large projects also
require significant time to fully populate the delta directofyminimum integration only copies thoske$
under aegis control, skipping all “produced&$. Inthe case where a file upon whickeg/thing depends
is changed, verything will be built alyway so the cop of the already built files is a waste of tim&his
means that sometimes a minimum can be as cheap as a normal integration.

Page 48 (bl/lib/en/user-guide/c2.4.s0) Peter Miller

Aegis UserGuide

3.4. TheAdministrator

The prerious discussion of delopers, rgiewers and integrators hasvered may aspects of the produc-
tion of software using Ags. Theadministrator has responsibility foveeything the don't, but there is
very little left.

These responsibilities include:

* access control: The administrator adds and rasél categories of useincluding administratorsThis
is on a peiproject basis, and has nothing to do witlix user administration. This simply nominates
which users may do what.

» change creation: The administrator adds (and sometimewves)rahanges to the system. At later stages,
developers may alter some attributes of the change, such as the description, to sayywihatcthe

* project creation: Aegis does not limit who may create projeatsyhen a project is created the user who
created the project is set to be the administrator of that project.

All of these things will be examined

3.4.1. Bebre You Start

Have you confgured your account to use gis? SedheUser Setugsection of theTips and Taps chapter
for how to do his.

3.4.2. TheFirst Change

Mary things need to happen beforesdepment can begin on the first change; the project must be created,
the staf but be gven access permissions, the branches created, and the change must be created.

alex% aenpr example -dir /projects/example -version -
aegis: project "example": project directory "/projects/example”
aegis: project "example": created

alex%

Once the project has been created, the project attributes arlesetvill set the desired project attrites
using the-Edit option of theaepacommand. Thiswill invoke an editor (vi(1) by default) to edit the
project attrilutes. Ale edits them to look lik this:

description = "Aegis Documentation Example Project";
developer_may_review = false;
developer_may_integrate = false;
reviewer_may_integrate = false;

The project attributes are set as follows:

alex% aepa -edit -p example

...edit as above...

aegis: project "example.1.0": attributes changed
alex% aelp

List of Projects

Project Directory Description

example /projects/example Aegis Documentation Example
Project

alex%

The various sté&imust be added to the project. \B®pers are the only sfaffho may actually edit files.

alex% aend pat jan sam -p example

aegis: project "example": user "pat" is now a developer
aegis: project "example": user "jan" is now a developer
aegis: project "example": user "sam" is now a developer
alex%

Reviewers may veto a change. There mayJsdap between the various categories, asvdmere for Jan:

Peter Miller (bl/lib/en/user-guide/c2.4.s0) Page 49

User Guide Aegis

alex% aenrv robyn jan -p example

aegis: project "example": user "robyn" is now a reviewer
aegis: project "example": user "jan" is now a reviewer
alex%

The next role we need to fill is an integrator.

alex% aeniisa -p example
aegis: project "example™: user "isa" is now an integrator
alex%

Once the stéfhave been gien access, it is time to create the working branch. Branches inherit their
attributes and stéfists from their parent branches whenythee first created, which is whwe st all that
stuff first.

alex% aegis -nbr -p example 1
aegis: project "example.1": created
alex% aegis -nbr -p example.1 0
aegis: project "example.1.0": created
alex%

This is for versioning; see tH&ranchingchapter for more informationFor the moment, we will simply
work on branch 1.0. Notice lothe branches appear as projects in the project listing; in general branches
can be used interchangeably with projects.

alex% ael p
List of Projects

Project Directory Description
example Iprojects/example Aegis Documentation Example
Project

example.l /projects/example/ Aegis Documentation Example
branch.1 Project, branch.1.

example.1.0 /projects/example/ Aegis Documentation Example
branch.1/branch.0 Project, branch.1.0.

alex%

Once the working branch has been createdx &teates the first changelhe -Edit option of theaenc
command is used, to create the attributes of the changg.amhedited to look lik this:

brief_description = "Create initial skeleton.";
description = "A simple calculator using native \
floating point precision. \

The four basic arithmetic operators to be provided, \
using conventional infix notation. \

Parentheses and negation also required.";

cause = internal_enhancement;

The change is created as follows:

alex% aenc -edit -p example.1.0

...edit as above...

aegis: project "example.1.0": change 10: created
alex%

Notice that theifst change number is “10”. This is done so that changes 1 to 9 could be usegfias b
branches at some future time. See Bnanchingchapter for more informationYou can over-ride this is
you need to.

The abwee was written almost a decade agthere is a newer commartitaenc which uses a GUI and is
much easier to use, with a much less fiddly irstegf You may want to try that command, instead, for most
routine change creation.

At this point, Alex walks down the hall to@®'s dfice, to ask Pat to delop the first changePa has had
some practice using Aegis, and can be relied on to do the rest of the project configuration speedily.

Page 50 (bl/lib/en/user-guide/c2.4.s0) Peter Miller

Aegis UserGuide

3.4.3. TheSecond Change

Some time laterAlex patiently sits through the whining and grumbling of an especially pedantic Tiser
following change description is duly entered:

brief_description = "file names on command line";
description = "Optional input and output files may be \
specified on the command line.";

cause = internal_bug;

The pedantic user wanted to be able to natas &n the command line, rather than use I/O redirection.
Also, having a bug in this example is useful. The change is created as follows:

alex% aenc -edit -p example.1.0

...edit as above...

aegis: project "example.1.0": change 11: created
alex%

At some point a desloper will notice this change and start work on it.

3.4.4. TheThird Change

Other features are required for the calculadod also for this xxample. Thehird change addsxponentia-
tion to the calculatgiand is described as follows:

brief_description = "add powers";

description = "Enhance the grammar to allow exponentiation. \

No error checking required.";
cause = internal_enhancement;

The change is created as follows:

alex% aenc -edit -p example.1.0

...edit as above...

aegis: project "example.1.0": change 12: created
alex%

At some point a dezloper will notice, and this change will be worked on.

3.4.5. TheFourth Change
A fourth change, this time adding variables to the calculator is added.

brief_description = "add variables";

description = "Enhance the grammar to allow variables. \
Only single letter variable names are required.";

cause = internal_enhancement;

The change is created as follows:

alex% aenc -edit -p example.1.0

...edit as above...

aegis: project "example.1.0": change 13: created
alex%

At some point a desloper will notice, and this change will be worked on.

3.4.6. Administrator Command Summary

Only a fav of the Aegis commandalable to administrators fra been used in thisxample. Thdollow-
ing table lists the Aegis commands most useful to administrators.

Command Description

aeca ediChange Attributes
ael ListStuff

Peter Miller (bl/lib/en/user-guide/c2.4.s0) Page 51

User Guide

aena
aenc
aencu
aend
aeni
aenpr
aenrv
aepa
aera
aerd
aeri
aermpr
aerrv

Aegis

Ner Administrator
Ne/ Change

Nev Change Undo
Nev Devdoper

Nev Integrator

Nev Project

Nev Reviewer
ediProject Attributes
Remee Administrator
Remwe Devdoper
Remuee Integrator
Remee Roject
Remue Reviewer

You will want to read the manual entries for all of these commaNdse that all Aegis commandsveaa
—Help option, which will gve a esult very similar to the correspondingan(1) output. Most Aegis com-
mands also hee a—List option, which usually lists interesting context semsithformation.

Page 52

(bl/lib/en/user-guide/c2.0.50) Peter Miller

Aegis

3.5. Whatto do Next

This chapter has ggn an overview of what using
Aegis feels lile. Asa rext step in getting to knw
Aegis, it would be a good idea if you created a
project and went through this samereise. You
could use this exactxample, or you could use a
similar small project. The idea is simply to run
through mam of the same steps as in thample.
Typos and other naturavents will ensure that
you come across a number of situations not
directly covered by this chapter.

If you have rot already done do, a printed gopf
the section 1 and 5 manual entries will besin-
able. If you dont want to use that mantrees,
they will be available on-line, by using the
"-Help" option of the appropriate commandriv
ant. Ty:

% aedb -help
...manual entry...
%

Note that this xample has not demonstrated all of
the available functionality One item of particular
interest is that tests, Bkany ather source ile,
may be copied into a change and miedif or
even deleted, just like any ather source file.

3.6. CommonQuestions

There are a number of questions which are fre-
quently askd by people wluating Aajis. This
section attempts to address some of them.

3.6.1. Insulation

The repository model used by Aegis is of the
“push” type - that is, changes to the baseline are
“pushed” onto the desloper as soon as there
integrated. Mawg configuration management sys-
tems hae a ‘pull” model, where the deloper
elects when to cope with changes in the reposi-
tory. At first glance, Aegis does not appear to
have a ‘pull” equivalent.

It is possible to insulate your change from the
baseline as much or as little as requirékhe
aecffl) command, used to cppfiles into a
change, has aread-only option. Thefiles
copied in this vy are marked as insulatione(
you dont intend to change them)f you have rot
un-copied them at delop end time, theaedg1)
command will produce a suitable error message,
reminding you to un-cgpthe insulation ander-
ify that your change still builds and tests success-
fully with the (probably) now-different baseline.

Peter Miller

(bl/lib/en/user-guide/c2.6.50)

UserGuide

3.6.1.1. CopyRread-Only

It is possible to select the glee of insulation.
By using ‘aecp . " at the top of a deslopment
directory the complete project source tree will be
copied, thus completely insulating yowind
you, it comes at the cost of a complete build.

If you are working on a libranand only want the
rest of the library to remairixked, simply cop the
whole library @ecp library/fred), and
allow the rest to track the baseline. This comes at
a gnaller cost, because more of the basedine’
object files can be taken advantage of.

3.6.1.2. Branches

It is also possible to create a sub-branch (see the
Branchingchapter). Thigloes not itself automat-
ically insulate, hawever the first change of a
branch intended to insulateowld copy and inte-
gratebut not modifythe fles to be insulatedYou
need to remember to perform @oss-branch
mege with the parent branch before igtating

the branch back into the parent branch.

3.6.1.3. Builds

You can also insulate yourself from baseline
change by being seleeti @out what you choose
to kuild. You can do this by giving specifiaid
targets on theel(1) command line, or you could
copy the build tools onfiguration file and
butcher it. Remember to change it back before
you aed€1) your change!

3.6.1.4. Mix-and-Match

Some or all of the alve techniques may be com-
bined to provide an insulation technique best
suited to your project and dgopment polig.
E.g. changing the bild configuration file for a
branch dedicated to working on a small portion of
a lage project; twards the ed of the delop-
ment, change the build cagdration file back and
perform integration testing.

3.6.1.5. Disadantages

There is actually a down-side to insulating your
changes from thevelution of the baseline.By
noticing and adapting to the baseline, yoweha
much less meing to do at the end of your
change set. Each imwration will typically be be
modest, bt the cumulatie dfect could be sub-
stantial, and add a huge wupected (and untia-
geted for) time penalty.

Page 53

User Guide

It also means that if there are integration problems
between your work and the changes which were
integrated before yours, or if yourork shows up

a hug in their work, the project find this out late,
rather than earlyThe literature, based on indus-
trial experience, indicates that the earlier prob-
lems are found the cheaperytaee to fix.

Insulated deelopment directories also use more
disk space. While disk space is reldty cheap
these days, it can still add up to a substantial hit
for a large deelopment team. Un-insulated
development directories can talkedvantage of the
pre-compiled objects and libraries in the baseline.

3.6.2. Rartial Check-In

In the course of deloping nev functionality it is
very common to come across a peaséing hug
which the ne functionality eposes. Itis com-
mon for such bugs to b&éd by the decloper in
the same deslopment directoryin order to get
the nev functionality to a testable state.

There are tw common courses of action at this
point: simply include the bug fix with the rest of
the change, or integrate thedofix earlier than
the rest of the change. Combining thegbfix
with the rest of the change carvlaamasty efects
on statistics: it can hide the trueddlevel from
your metrics program, and it also deniegidhe
opportunity of having accurate test correlations
(seeaef(1) for more information.) It also denies
the rest of the delopment team the use of the
bug fix, or worse, it allavs the possibility that
more than one team member will fix theigh
wasting deeelopment effort and time.

Many configuration management systems wailo
you to perform a partial check-in of eork area.
This means that you can check-in just theg bx,
but continue to work on the unfinished portions of
the functionality you are implementing.

Because Aegis insists on atomic change sets
which are known to build and test successfully

such a partial check-in is not allowed - because
Aegis cant know for certain that it works.

Instead, you are able tolone a dhange (see
aeclonél) for more information).This gives you
a rew change, and a secondve®pment direc-
tory, with exactly the sameilés. You then
remove from this second change all of thées
not related to the dgy fix (using aecpyl),
aenfy11), etg. You then create a testjilu, dif-
ference, run the test, @idop end, all as usual.

Page 54

(bl/lib/en/user-guide/c2.6.50)

Aegis

The original change will then need to be gest
with the baseline, because the bug fix change will
have been integrated before itUsually this is
straight-forvard, as you already W@ the changes
(some merge tools makhis harder than others).
Often, all that is required is to nger, and then
say ‘aecpu -unch " to un-copy al files which

are (nav) unchanged when compared to the-cur
rent baseline.

3.6.3. Multiple Active Branches

Some companies t@ multiple branches aate &
the same time, for different customers or diskrib
tions, etc

They often need to makthe same change to more
than one branch. Some configuration manage-
ment systems aiw you to check-in the saméef
multiple times, once to each ailranch. Agis
does not let you do this, because you need to con-
vince Aegis that the change set willilol and test
cleanly on each branch. It is quite common for
the change to require nonvidl edits to work on
each branch.

3.6.3.1. Cloning

Aegis instead provides wmechanisms to handle
this. Thefirst, and simplest to understand, is to
clone the change onto each valg branch (rather
than onto the same branch, as mentioned/eabo
for bug fixes). Therbuild and test as normal.

3.6.3.2. Ancestral

The second technique is more subtle. Perform the
fix as a dange to the common ancestor of both
branches. Thisassumes that neither branch is
insulated against the rent area of code, and
that earlier changes to the branch do not mask it
in some way (otherwise a cross-branch geer
with the common ancestor will be needed to prop-
agate the fix).

3.6.4. Collaboration

It is often the case that @ifult problems are tack-
led by small groups of 2 or 3 dtafvorking
together In order to do this, theoften work in a
shared wrk area with group-writable or global-
write permissions.However, this tends to ge
security auditor heart attacks.

Aegis has seeral different ways to achiee the
same ends, and still notvgi the auditors indiges-
tion.

Peter Miller

Aegis

3.6.4.1. Chang®wner

The simplest methodvailable is to change the
ownership of a change from onevd®per to the
next. A new devdopment directory is created for
the nev devdoper, and the source files are copied
acros#®. This allovs a kind of serial collabora-
tion between deslopers.

3.6.4.2. Branch

The other possibility is to create a branch to per
form the work in, rather than a simple chang.
branch in Aegis is literally just a big change,
which has lots of sub-changes.) This allows par
allel collaboration between ddopers.

3.6.4.3. Yew Path Hacking

Aegis usually provides a “we path” to the liild
tool. Thisspecifes where to look for sourcédes
and dewed files, in order to union together the
development directoryand the baseline, and the
branchs ancestors’ baselinedf you run the hild
by hand, rather than through dis, you can add
another deeloper’s devdopment directory to the
view path, after your own delopment directory
but before the baseline.

This has may of the advantages of the branch
method, but none of the sgfeards. Inparticular,

if the other deeloper edits a file, and it no longer
compiles, your deslopment directory will not,
either.

15 For the technically minded: thehown(2) sys-
tem call has semantics which vary too widely
betweerunix variants andife-systems to be useful.

Peter Miller (bl/lib/en/user-guide/c3.0.s0)

UserGuide

Page 55

User Guide

4. TheHistory Tool

Aegis is decoupled from the history mechanism.
This allows you to use the history mechanism of
your choice, SCCS or RCS, foxamnple. Yu
may &/en wish to write your own.

The intention of this is that you may use a history
mechanism which suits your special needs, or the
one that comes free with your Vaur of UNIX
operating system.

Aegis uses the history mechanism fide history
and so does not require nyaaf the features of
SCCS or RCS.This simplistic approach can
sometimes mak the interhce to these utilities
look a little strange.

4.1. History File Names

In order to track project source file renames and
yet preserg a ontinuous historythe name of

each source file and the name of each correspond-

ing history file hae rothing in common.The his-
tory file will have the same name (both on the
local repository and grremote repository it is in)
no matter hey mary times the source file is
renamed.

Each sourceile is assigned uwérsally unique
identifier (UUID) when it is first created.This
attribute, unlike the source ike’'s mame, is
immutable and thus is suitable for use when form-
ing the name of the history file.

4.2. Interfacing

The history mechanism interface is found in the
project configuration file calledegis.conf rela-
tive © the root of the baselindt is a sourceile
and subject to the same controls ay ather
source ifle. The history fields of the ife are
described as follows

4.2.1. history_ceate_command

This field is used to create awehistory. The
command is alays executed as the projecivmer.
Substitutions ailable for the command string
are:
${Input}

absolute path of source file
${History}

absolute path of history file

In addition, all substitutions describedaasul§5)
are ailable.

This command should be identical to tiistory_-
put_commandotherwise mysterious things can

Page 56

(bl/lib/en/user-guide/c3.0.s0)

Aegis

happen when branches are ended.

4.2.2. history_get_command

This field is used to get a file from historfhe
command may bexecuted by deelopers. Sub-
stitutions &ailable for the command string are:

${History}
absolute path of history file
${Edit}
edit number as dven by the history -
query_command.
${Output}
absolute path of destination file

In addition, all substitutions describedadaasul§5)
are ailable.

4.2.3. history_put_command

This field is used to add a wechange to the his-
tory. The command is alays executed as the
project avner Substitutions wailable for the
command string are:
${Input}

absolute path of source file
${History}

absolute path of history file

In addition, all substitutions describedaasul§5)
are ailable.

This command should be identical to tiistory_-
create_commandtherwise mysterious things can
happen when branches are ended.

4.2.4. history_query_command

This field is used to query the topmost edit of a
history fle. Resultto be printed on the standard
output. This command may be xecuted by
developers. Substitutionsvailable for the com-
mand string are:

${History}
absolute path of history file

In addition, all substitutions describedadasul§5)
are ailable.

4.2.5. history_content_limitation

This field describes the content style which the
history tool is capable of working with.

ascii_text
The history tool can only cope witlilefs
which contain printable ASCII characters,
plus space, tab andwikne. Thefile must
end with a neline. Thisis the default.

Peter Miller

Aegis

international _text
The history tool can only cope witlilefs
which do not contain the NUL character
The file must end with a newline.

binary_capable
The history tool can cope witlids without
ary limitation on the form of the contents.

When a file is added to the history (by either the
history create_commandor the history put -
commandield) it is kamined for conformance to
this limitation. If there is a problem, thdef is
encoded in either the MIME quoted printable or
the MIME Base 64 encoding (see RFC 1521),
whichever is smaller, before being gien to the
history tool. The file in the baseline is
unchanged.

On extract (thehistory _get_commandeld) the
encoding is reersed, using information attached
to the change file information. This is because
each put could use a flifent encoding (although
in practice, file contents rarely change that dra-
matically and the same encoding is dily to be
deduced eery time).

4.2.6. history_tool_trashes ife

Many history tools (e.g. RCS) can modify the
contents of the file when it is committedVhile
there are usually options to turn this off,ythaee
seldom used.The problem is: if the commit
changes theilg, the source in the repositorywo
no longer matches the objedefin the repository

- i.e. the history tool has compromised the refer
ential integrity of the repository.

By default, when this happens dis issues aatal

error (atintergate pasgime). You can turn this
into a warning if you are ceinced this is irrele-
vant. Thiswould only male snse if the substi-
tion only ever occurs in comments.See aep-

conf{5) for more information on thealues for
this field.

4.2.7. QuotingFilenames

The default setting is for Ags to rejectifenames
which contain shell special characterdhis
ensures thailéenames may be substituted into the
commands without worrying about whether this is
safe. Ifyou set theshell_safe_filenamefseld of
the projectaegis.conffile to false , you will
need to surround filenames with tBéquote
filenamé substitution. Thiswill only quote fle-

names which actually need to be quoted, so users

usually will not notice. This applies to all of the

various filenames in the commands in the sections

Peter Miller

(bl/lib/en/user-guide/c3.5.s0)

UserGuide

which follow.

4.2.8. emplates

The source distribution contains numerous igpnf
uration examples in a directory calléitb/con-
fig.example/ which is installed into
lusr/local/share/aegis/config.exampliey defult.
In the interests of accunadt may be best to cgp
configurations from there, rather than getype
the ones belw.

Page 57

User Guide

4.3. Usingaesvt

The aesvfl) command is distributed with #s.

It supports binaryiles, has versy small history
files, and has good end-to-end babtar. The
entries for the commands are listed belo

4.3.1. history_ceate_command

This command is used to create aviide history
This command is alays executed as the project
owner.

The following substitutions arevalable:
${Input}
absolute path of the source file

${History}
absolute path of the history file

The entry in theegis.confile looks like this:

history_create_command =
"aesvt -checkin "
"-history $history "
"-f $input"”

4.3.2. history_put_command

It is essential that théistory create_command
and thehistory put_commandre identical. It is

a hstorical accident that there aredveeparate
commands: before Aegis supported branches, this
was ot a requirement.

4.3.3. history_get_command

This command is used to get a specific edit back
from history This command is alays executed
as the project owner.

The following substitutions arevalable:

${History}
absolute path of the history file
${Edit}
edit number as dven by hstory_query_-
command
${Output}
absolute path of the destination file

The entry in theegis.confile looks like this:

history_get_command =
"aesvt -checkout "
"-history $history "
"-edit $edit "
"-0 $output”

Page 58

(bl/lib/en/user-guide/c3.1.s0)

Aegis

4.3.4. history_query_command

This command is used to query what the history
mechanism calls the top-most edit of a history
file. Theresult may be anarbitrary string, it
need not be anything kka rumber just so long

as it uniquely identifies the edit for use by this-
tory_get_commandt a later date. The edit num-
ber is to be printed on the standard outpLitis
command is alays executed as the projecivmer.

The following substitutions arevalable:

${History}
absolute path of the history file

The entry in theegis.confile looks like this:

history_query_command =
"aesvt -query "
"-history $history"

4.3.5. Templates

Thelib/config.example/aes¥ile in the Agis dis-
tribution (installed adust/local/share/aegis/con-
fig.example/aesviby defult) contains all of the
abore mmmands, so that you may readily insert
them into your project configuration file.

Also, there are some subtleties to writing the
commands, which are not present in thevabo
examples. Imparticular being able to supportlé
names which contain characters which are special
to the shell requires the use of the ${quote} sub-
stitution around all of the files names in the com-
mands.

In addition, it is possible to store meta-date with
each ersion. [er example: Descrip-
tion=${quote ($version) ${change
description}} " inserts the ersion number
and the brief description into thiefs log. This
means that using thaesvt -listoption will pro-
vide quite useful summaries.

4.3.6. BinaryFiles

Theaesvfl) command is able to cope with binary
files. Set

history_content_limitation =
binary_capable;

so that Aegis knows that no encoding is required.

Peter Miller

Aegis

4.4. UsingSCCS

The entries for the commands are listed Wwelo
SCCS uses a slightly f#rent model than Ags
wants, so some maneuvering is requirethe
command strings in this section assume that the
SCCS commandccsis in the command search
PATH, but you may like to hard-wire the path, or
set ATH at the start of each command. (It is also
possible that you need to say “delta” instead of
“sccs delta”. if this is the case, this command
needs to be in the pathYou should also note
that the strings areséys handed to the Bourne
shell to be recuted, and are set to exit with an
error immediately a sub-command fails.

One further assumption is that the-sccs-puyi)
command, which is distrilied with Aegis, is in
the command search patfihis insulates some of
the weirdness that SCCS carries on with, and
makes the commands beleaomprehensible.

4.4.1. history_ceate_command

This command is used to create avmpeoject his-
tory. The command is alays executed as the
project owner.

The following substitutions arevalable:
${Input}
absolute path of the source file

${History}
absolute path of the history file

The entry in theegis.confile looks like this:

history_create_command =
"ae-sccs-put -y$version -G$input "
" $ {d $h}/s.${b $h}";

It is important that thenistory create_command
and thehistory _put_commante the sameThis
is necessary for branching to work correctly.

4.4.2. history_get_command

This command is used to get a specific edit back
from history The command may bexecuted by
developers.

The following substitutions arevalable:
${History}
absolute path of the history file
${Edit}
edit number as dgven by history_query_-
command
${Output}
absolute path of the destination file

Peter Miller

(bl/lib/en/user-guide/c3.1.s0)

UserGuide

The entry in theegis.confile looks like this:

history_get_command =
"get-r'se’-s-p -k "
" ${d $h}/s.${b $h} > $0";

4.4.3. history_put_command

This command is used to add am&op-most"
entry to the historyile. Thiscommand is avays
executed as the project owner.

The following substitutions arevalable:
${Input}
absolute path of source file

${History}
absolute path of history file

The entry in theegis.confile looks like this:

history_put_command =
"ae-sccs-put -y$version -G$input "
" ${d $h}/s.${b $h}";

Note that the SCCS file is left in tint-editstate,
and that the source file is left in the baseline.

It is important that thenistory create_command
and thehistory_put_commante the sameThis
is necessary for branching to work correctly.

4.4.4. history_query_command

This command is used to query what the history
mechanism calls the top-most edit of a history
file. Theresult may be anarbitrary string, it
need not be anything kka rumber just so long

as it uniquely identifies the edit for use by this-
tory_get_commandt a later date. The edit num-
ber is to be printed on the standard outpLitis
command may bexecuted by deelopers.

The following substitutions arevalable:

${History}
absolute path of the history file

The entry in theegis.confile looks like this:

history_query_command =
"get -t -g ${d $h}/s.${b $h}";

Note that "get" reports the edit number on stdout.

4.4.5. emplates

The lib/config.example/sccile in the Aegis dis-
tribution contains all of the ake @mmands
(installed as/usr/local/share/aegis/example.con-
fig/sccsby defwult) so that you may readily insert
them into your project configuration file (called
aegis.confby default, seeaepconf(5) for how to
call it something else).

Page 59

User Guide

Also, there are some subtleties to writing the
commands, which are not present in thevabo
examples. Imparticular being able to supportlé

names which contain characters which are special

to the shell requires the use of the ${quote} sub-
stitution around all of the files names in the com-
mands.

In addition, it is possible to ke a nuch more
useful description for they option. For exam-
ple: “y${quote ($version) ${change
description}} " inserts the ersion number
and the brief description into thiefs log. This
means that using thgccs ps(1) command will
provide quite useful summaries.

4.4.6. BinaryFiles

SCCS is unable to cope with binaile$. How-
eve, Aegs will transparently encode all such
files, if you leae the history_content_limitation
field unset.

Page 60 (bl/lib/en/user-guide/c3.2.50)

Aegis

Peter Miller

Aegis

4.5. UsingRCS

The entries for the commands are listed Wwelo
RCS uses a slightly different model thargiae
wants, so some maneuvering is requirethe
command strings in this section assume that the
RCS commandsi andco andrcs andrlog are in
the command searchAPH, but you may lile o
hard-wire the paths, or seAPH at the start of
each. Yu should also note that the strings are
always handed to the Bourne shell to beaeited,
and are set to exit with an error immediately a
sub-command fails.

In these commands, the RCS file isepk
unlocked, since only thevaner will be checking
changes in. The RCS functionality for coordinat-
ing shared access is not required.

One advantage of using RCS8rsion 5.6 or later
is that binary files are supported, should yantv
to have kinary files in the baseline.

4.5.1. history_ceate_command

This command is used to create aviiide history
This command is alays executed as the project
owner.

The following substitutions arevalable:
${Input}
absolute path of the source file

${History}
absolute path of the history file

The entry in theegis.confile looks like this:

history_create_command =
"ci -u -d -M -m$c -t/dev/null \
$i $h,v; rcs -U $h,v";

The 'ci -u " option is used to specify that an
unlocked copy will remain in the baselineThe

"ci -d " option is used to specify that thaef
time rather than the current time is to be used for
the nev revision. The"ci -M " option is used to
specify that the mode date on the origirikd s

not to be altered. Thecl'-t " option is used to
specify that there is to be no descriptiort teor

the nev RCS fle. The"ci-m " option is used to
specify that the change number is to be stored in
the file log if this is actually an update (typically
from aenfafteraermon the same file name)he
"rcs -U " option is used to specify that thewne
RCS file is to hee wnstrict locking.

It is essential that théistory create_command
and thehistory_put_commandre identical. It is
a historical accident that there aredveeparate

UserGuide

was ot a requirement.

4.5.2. history_get_command

This command is used to get a specific edit back
from history This command is alays executed
as the project owner.

The following substitutions arevalable:

${History}
absolute path of the history file

${Edit}
edit number as gven by history_query_-
command

${Output}
absolute path of the destination file

The entry in theegis.confile looks like this:

history_get_command =
"co -r'se’ -p $h,v > $0";

The 'co -r option is used to specify the edit to
be retriz#ed. The'"co -p option is used to spec-
ify that the results be printed on the standard out-
put; this is because the destination filename will
neverlook anything lile the history sourceilé-
name.

4.5.3. history_put_command

This command is used to add am&op-most"
entry to the historyile. Thiscommand is avays
executed as the project owner.

The following substitutions arevalable:
${Input}
absolute path of source file

${History}
absolute path of history file

The entry in theegis.confile looks like this:

history_put_command =
"ci -u -d -M -m$c -t/dev/null \
$i $h,v; rcs -U $h,v";

Uses ci to deposit a werevision, using -d and -M
as described for history create_commarithe

-m flag stores the change number in the file log,
which allavs rlog(1) to be used to find the fis
change numbers to which eachiséon of the fie
corresponds.

The 'ci -u " option is used to specify that an
unlocked copy will remain in the baselineThe

"ci -d " option is used to specify that thief
time rather than the current time is to be used for
the nev revision. The'"ci -M " option is used to

commands: before Aegis supported branches, this specify that the mode date on the originkd fs

Peter Miller

(bl/lib/en/user-guide/c3.2.50)

Page 61

User Guide

not to be altered. Thecl'-m " option is used to
specify that the change number is to be stored in
the file log, which allas rlog to be used toirid

the change numbers to which each revision of the
file corresponds. You might want to use
-m$p,$c instead which stores both the project
name and the change numb@&r -m$version
which will be composed of the branch and the
delta. Thesenake it much easier to track changes
across branches.

It is essential that théistory create_command
and thehistory_put_commandre identical.lt is

a historical accident that there aredveeparate
commands: before Aegis supported branches, this
was ot a requirement.

4.5.4. history_query_command

This command is used to query what the history
mechanism calls the top-most edit of a history
file. Theresult may be anarbitrary string, it
need not be anything Ekanumber just so long
as it uniquely identifies the edit for use by this-
tory_get_commandt a later dateThe edit num-
ber is to be printed on the standard outpLitis
command is alays executed as the projecivmer.

The following substitutions arevalable:

${History}
absolute path of the history file

The entry in theegis.confile looks like this:

history_query_command =
"rlog -r$h,v | "
"awk ’["revision/ {print $$2}™;

4.5.5. mege_command

RCS also provides mege program, which can
be used to provide a three-way merge.

All of the command substitutions described in
aesulsS) are aailable. Inaddition, the follaving
substitutions are alswailable:

${ORiginal}
The absolute path name of a file containing
the version originally copied. Usually in a
temporary file.

${Most_Recent}
The absolute path name of a file containing
the most recent ersion. Usuallyin the
baseline.

${Input}
The absolute path name of the edited-v
sion of the fle. Usuallyin the deelopment
directory Aegs usually mees the original

Page 62

(bl/lib/en/user-guide/c3.2.s0)

Aegis

source file aside, so that the output may
have the source files nrame.

${Output}
The absolute path name of thike in which
to write the difference listing.Usually in
the deelopment directory usually the
name of a change source file.

The entry in theegis.confile looks like this:

merge_command =
"set +e; "
"merge -p -L baseline -L C$c "
" $ mr $orig $in > $out; "
"test $? -le 1",

The 'merge -L " options are used to specify
labels for the baseline and thevdepment direc-
tory, respectrely, when conflict lines are inserted
into the result. Thertierge -p " options is used

to specify that the results are to be printed on the
standard output.

It is important that this command does notvamo

its input and outputiles around, otherwise this
contradicts the arnings Aegis may issue to the
user (In previous versions of Ags, this was nec-

essaryhoweve this is no longer the case.)

Warning: The \ersion of diff3(1) available to
RCS meigg(1l) has a huge impact on its petfor
mance and utility You need to grab and install
GNU diff to get the best resultsUnfortunately
the dif tool used by RC#nege(1) is determined
at compile time. This means that you need to
build and install GNU dif packagebefore you
build and install GNU RCS package.

4.5.6. Refeential Integrity

Many history tools (including RCS) can modify
the contents of the file when it is committed.
While there are usually options to turn thig, of
they are seldom usedThe problem is: if the com-
mit changes the file, the source in the repository
nov no longer matches the object file in the
repository -i.e. the history tool has compromised
the referential integrity of the repository.

history_put_trashes_file = warn;

If you use RCS é&yword substitution, you will
need this line.(The default is to report aatal
error.)

Another reason for this option is that it tellsghe
it needs to recalculate thitefs fingerprint after a
checkin.

Peter Miller

Aegis

4.5.7. emplates

Thelib/config.example/rcéile in the Aegis distri-
bution (installed as/ust/local/share/aegis/con-
fig.example/rcs by defwlt) contains all of the
abore mmmands, so that you may readily insert
them into your project configuration file.

UserGuide

If you wish to prgent RCS from performing
keyword expansion, used tihes -kb option.

If, however, you wish to lkeep using &word
expansion, set

history_tool_trashes_file = warning;

to cause Aegis to warn you, rather than fail.

Also, there are some subtleties to writing the
commands, which are not present in thevabo
examples. Imparticular being able to supportlé
names which contain characters which are special
to the shell requires the use of the ${quote} sub-
stitution around all of the files names in the com-
mands.

In addition, it is possible to ke a nuch more
useful description for them option. For exam-
ple: “m${quote ($version) ${change
description}} " inserts the ersion number
and the brief description into thiefs log. This
means that using thdog(1) command will pro-
vide quite useful summaries.

4.5.8. BinaryFiles

RCS (version 5.6 and later) is able to cope with
binary iles. Itdoes so by saving a whole gopf
the file at each check-in.

If you want Agjis to transparently encode all such
files, simply lege the history_content_limitation
field unset.

If you want to check-in binanyjlés, add the-kb
option to each of thecs -U commands in the
fields abwe, and also set

history_content_limitation =
binary_capable;

so that Aegis knows that no encoding is desired.

4.5.9. history_put_trashes ifes

If you use RCS &words, such as i@ $ or

$log $, this will result in theife in the baseline
being changed by RCS at integrate pagsis is

after the huild. Theresult is that the sourcées

no longer match the objedtefs. Oops.

While such mechanism are essential when using
only a simple history tool,af more information
may be obtained using the file history repaser(
file_history filenamé, rendering such crude
methods unnecessary.

In addition to expectedxpansions in file header
comments, this can also bery destructie if, for
example, such a string appeared in a uuencoded
or MIME base 64 encoded file.

Peter Miller (bl/lib/en/user-guide/c3.3.s0)

Page 63

User Guide

4.6. Usingfhist

The fhist program vas written by David 1. Bell
and is admirably suited to providing a history
mechanism with out the "cruft" that SCCS and
RCS impose.

Please note that tH# edit #] feature needs
to be aoided, or the-Forced_Update(-fu) flag
needs to be used in addition to th€ondi-
tional_Update(-cu) flag, otherwise updates will
complain that “Input file XXX' contains editA
instead oB for module YYY”

The history_create_commandand the his-
tory_put_commandare intentionally identical.
This minimizes problems when using branches.

4.6.1. history_ceate_command

This command is used to create avmpeoject his-
tory. The command is alays executed as the
project owner.

The following substitutions arevalable:
${Input}
absolute path of the source file

${History}
absolute path of the history file

The entry in theegis.confile looks like this:

history_create_command =
"fhist ${b $h} -create -cu "
"-i $i -p ${d sh} -r";

Note that the source file is left in the baseline.

4.6.2. history_get_command

This command is used to get a specific edit back
from history The command may bexecuted by
developers.

The following substitutions arevalable:

${History}
absolute path of the history file
${Edit}
edit number as dgven by history_query_-
command
${Output}
absolute path of the destination file

The entry in theegis.confile looks like this:

history_get_command =
"fhist ${b $h} -e '$e’ -0 $0 "
"-p ${d $h}";

Note that the destination filename wikkverlook
arything like the history source filename, so the
-p is essential.

Page 64

(bl/lib/en/user-guide/c3.3.s0)

Aegis

4.6.3. history_put_command

This command is used to add am&op-most"
entry to the historyile. Thiscommand is avays
executed as the project owner.

The following substitutions arevalable:
${Input}
absolute path of source file

${History}
absolute path of history file

The entry in theegis.confile looks like this:

history_put_command =
"fhist ${b $h} -create -cu "
"-i $i -p ${d $h} -r";

Note that the source file is left in the baseline.

4.6.4. history_query_command

This command is used to query what the history
mechanism calls the "top-most" edit of a history
file. Theresult may be anarbitrary string, it
need not be anything kka rumber just so long

as it uniquely identifies the edit for use by this-
tory_get_commandt a later date. The edit num-
ber is to be printed on the standard outpLitis
command may bexecuted by deelopers.

The following substitutions arevalable:

${History}
absolute path of the history file

The entry in theegis.confile looks like this:

history_query_command =
"fhist ${b $h} -1 0"
"-p ${d $h} -q";

4.6.5. emplates

The lib/config.example/fhistile in the Aegis dis-
tribution (installed adust/local/share/aegis/con-
fig.example/thistby defwult) contains all of the
abore mmmands, so that you may readily insert
them into your project configuration file.

4.6.6. Capabilities

By default, FHist is unable to cope will NUL
characters in its input files, tvever this is the
only limitation. By default, Aegis expects that
history tools are only able to cope with printable
ASCII text. To tell it ontherwise, set

history_content_limitation =
international_text;

in the projectegis.confile.

Peter Miller

Aegis

Aegis will transparently encode binary filedlg$
which contain NUL characters) on entry andt e
from the history tool. This means that you may
have binary files in your project without coigfur-

ing anything special.

4.6.7. BinaryFiles

FHist (wersion 1.7 and later) has support for
binary fles. Thefhist —binary option may be
used to specify that the file is binathat it may
contain NUL characters. It is essential that you
have nsistent presence or absence of the
—binary option for eachilé when combined with
the —CReate, —Update, —Conditional_Update and
—Extract options.Falure to do so will produce
inconsistent results.

This means that you ha © always use the
—binary option in thehistory create_command
and history_put_commandields. Yu hae ©
decide right at theary beginning if your project
history will ever have binary files, or will neer
have binary fles. You cant change your mind
later If you choose to use the —binary option, set

history_content_limitation =
binary_capabile;

However, Aegs would transparently encode all
such files, if you lege the history_content_-
limitation field set for international x¢ In some
cases, Agis’ encoding will be more &tient than
fhist's. Andyou hare the advantage of being able
to change your mind later.

Peter Miller (bl/lib/en/user-guide/c3.4.s0)

UserGuide

Page 65

User Guide

4.7. DetectingHistory File Corruption

When you hee files which «&ist for long periods
of time, particularly files such as the ones typi-
cally used by history tools, which are generally
appended to, without modigtion of the bulk of
the file, there is a very real possibility that a block
of the fle could become corruptedver the
yearst® Unless you access thiefversions con-
tained within that block, you ka o way of
knowing whether or not the historyld is OK.
(Arguably, the operating system should check for
this, but may do mot, and in ap case the error
may not be detectable at thatdk)

Using Agis, you can add a simple checksum to
your history fles which will detect mancases of
corruption such as this, for all of the commonly
used history toolsNote: it cannot detect all cor
ruptions (nothing can) but it will detect more than
mary operating systems will.

You don’t need to use this technique with SCCS
or aesv(l), they dready hae checksums in their
files.

4.7.1. GeneraMethod
In general, you need to do three things:

1. You need to create some kind of checksum of
your history fle each time you modify it.
Something lile md5sur(il) from the GNU
Fileutils would be good. Store the checksum
in a file next to the historyilé. Thiswould be
done in the history_create_commandnd
history_put_commandields of the project
aegis.confile.

2. Eachtime the file is read, you need terify
the fle’s checksum. Uséhe same checksum
utility as before, and then compare it using,
say,cmpl); it it fails (either an IO erroror
the checksum doegntompare equal) then
don't proceed with the history file access.
You may need to repair or replace the disk.
You will need to restore from backup (yester
day’s backup, see belg). This would be
done at the lnning of thehistory create_-
command history_put_command history_-
get_command and history_query_command
fields of the projechegis.confile.

3. Becauseyou may not actually interact with
the file for years at a time, you need to check
the file fingerprints much more oftenDaily

16See also SaltzedH. et al (1981) End-to-end
arguments in system desjghttp://web.mit.edu/-
Saltzer/www/publications/endtoend/endtoend.pdf

Page 66

(bl/lib/en/user-guide/c3.4.s0)

Aegis

or at least weekly is suggestedou do this
with acron(1) job run nightly which compares
all of the history files with theimd5sur(l)
checksums. Emailfailures to the system
administrator and the project administrators.
By doing this nightly you not only =oid
backing-up corrupted files, you will vahys
know on which backup tape the good gop
resides - yesterday’s.

4.7.2. Confguration Commands

In order to implement this, you need to modify
some felds of your projectegis.confiile as fol-
lows:

history _create_command
You need to test if the histonjldé and its
checksum file exist, and check the checksum
if this is the case. Then, use whighkehis-
tory tool you choose (see the yiais sec-
tions of this chapter).If it succeeds, run
md5sur(il) over the history file fot the
source file) and store the checksum inle f
next to the history toof file. Using the
same filename plus and5sum extension
makes thecron(1) job easier to write.

history _put_command
You need to test if the file exists (it mafpr
example, be an old project to which yowha
recently added this technique) and check the
checksum if this is the case. Then, use your
history tool as normal.lf it succeeds, run
md5suril) over the history file fot the
source file) as in the create case.

history _get_command
You need to test if the file exists (it mafpr
example, be an old project to which yowha
recently added this technique) and check the
checksum if this is the cas@hen use your
history tool as normal.

history_head_command
This command is only used aeipassfile,
immediately after one of thastory_create_-
command or history_put_commandcom-
mands. Itis up to you whether you think
you need to add a guard as for ttistory -
get_command field.

4.7.3. AnAlternati ve

Rather than ruimd5sunfil) on the history iles
each time you modify them, you could wsep(1)
to obtain some minor compression, but it also
provides and Adler32 checksum of théef For
files with long histories, this can be tedious to

Peter Miller

Aegis

unpack gery time you need to extract an oldrvy
sion, lut such operations are frequently I/O
bound, and so there may be no permidow-
ness by the user..

4.7.4. AegisDatabase

In addition to your history files, Aegis maintains a
database ofile meta-data. In order to add a
checksum to the arious file making up the
database, turn on thecompressed_database
project attrimte. Inaddition to compressing the
database (a minor savings) it also adds an Adler32
checksum.

You can check this in theron(1) job by using
gzcafl) sent todev/null

Peter Miller (bl/lib/en/user-guide/c4.0.s0)

UserGuide

Page 67

User Guide

5. TheDependency Maintenance Tool

Aegis can place heg demands on the depen-
deny maintenance tool, so it is important that
you select an appropriate one. This chapter talks
about what features a dependemnaintenance
tool requires, and gés examples of hw to use

the various alternatés.

5.1. Required Features

The heart of an DMT is an inference engine
This inference engine acceptg@al of what you
want it to construct and a set nfles for how to
construct things, and attempts to construct what
you asked for gien the rules you speddd. This

is exactly a description of an expert system, and
the DMT needs to be arxgert system for con-
structing fles. Somethindike PROLOG is prob-
ably ideal.

Aegis is capable of supporting a wide variety of
development directory styles. The diferent
development directory styles place fifent
demands on the dependgnmaintenance tool.
Development directory styles will be described in
the next section, but here is a quick summary:

copy of al sources:
This is what CVS does, and what rgan
other VC tool do. Because you ha& a
complete cop of al source files, the
dependengc maintenance tool only needs to
be avare of one directory tree.

copy of everything:
This is a small optimization of the pieus
case to cut down the time required for that
first build,because the deed files from the
integration build can be reused.

link all sources
The is an optimization of the "cgpal
sources" case, because linking a file is sig-
nificantly faster than making a cppf a

file. The dependenc maintenance tool
only needs to beware of one directory
tree.

link everything

This is an optimization of the preus case,
again reusing devied files from the intgra-
tion build, except that you need to ensure
that your dependegicmaintenance tool is
configured to remee the derved file out-
puts of each rule before creating them, to
avad corrupting the baseline or getting
"permission denied" error.

Page 68

(bl/lib/en/user-guide/c4.1.s0)

Aegis

view path
This is the most é&fkient deelopment
directory style, and it scales much better
than ay of the abee, but the dependeyc
maintenance tool must be able to cope with
a herarcly of parallel source directory
trees. Thesdrees for a "vier path”, a list
of directories that programs search eto
find the files of interest. The vpath
statements of GNU Make are
almost, but not quite, capa-
ble of being used in this
way.

5.1.1. lew Paths

For the union of all files in a project and alllek

in a change (remembering that a change only
copies those files it is modifying, plus it may add
or remave files) for all files you must be able to
say to the dependenmaintenance tool,

"If and only if the file is up-to-date in
the baseline, use the baselineycop
the file, otherwise construct thiéefin
the deelopment directory".

The presence of a source file in the changeemak
the coyy in the baseline out-of-date.

Most DMTs with this capability implement it by
using some sort of search path, wilog a hierar
chy of directories to be scanned with little or no
modification to the rules.

If your DMT of choice does not pvale this func-
tionality, the development_directory_style.-
source_file_symlinkeld of the project coijura-
tion file may be set térue, which tells Aegis to
maintain symbolic links in the gelopment direc-
tory for all sourceifes in the baseline which are
not present in the gelopment directory (See
aepconf5) and ael(1) for more information.)
This incurs a certain amount offehead when
Aegis maintains these linksuba similar amount
of work is done within DMTs which W& sarch
path functionality.

5.1.2. Dynamicinclude File Dependencies

Include file dependencies are very important,

because a change may alter an include file, and all
of the sources in the baseline which use that
include file must be recompiled.

Consider the xample gven earlier: the include
file describing the inteate definition of a func-
tion is copied into a change and edited, and so is
the source file defining the function. It is

Peter Miller

Aegis

essential that all source files in the baseline which
include that ife are recompiled, which will usu-
ally result in suitable diagnostic errors ifyaaf

the clients of the altered functionusayet to be
included in the change.

There are tw ways of handling includeilé
dependencies:

» They can be kept in aile, and the file can be
maintained by suitable programs (maintaining it
manually neger works, thats just human nature).

» They can be determined by the DMT when it is
scanning the rules to determine what needs updat-

ing.

5.1.2.1. StaticFile

Keeping include dependencies in a file has a num-
ber of advantages:

» Most existing DMTs hee the ability to include
other rules files, so that when performing adile
opment build from a baseline rulegef it could
include a dependencies file in thevdepment
directory.

» Reading a file is much faster than scanning all of
the source files.

Keeping include dependencies in a file has a num-
ber of disadvantages:

* The file is independent of the DMT is ether
generated before the DMT isvoked, in which
case it may do more work than is necessaryt
may be ivoked ater the DMT (or after the DMT
has scanned its rules), in which case it may well
be out-of-date when the DMT needs it.

For example, the use ajcc -M produces "dot d"
files, which may be merged to construct such an
includable dependewcfile. This happens after
the DMT has read and applied the rulag, fmos-
sibly before the DMT has finisheaeuting’

» Mary tools which can generate this information,
such as thgcc -Moption, are triggered by source
files, and are unable to manage a case where it is
an include file which is changing, to include a dif-
ferent set of other includélds. Inthis case, the
inaccurate dependencies file may contain refer
ences to the old set of nested incluiiesf some

of which may no longer exist, This causes the
DMT to incorrectly generate an error stating that
the old includeife is missing, when it is actually

17See theUsing Male section for hw GNU
Make may be used.lt effectively combines both
methods: keping.d files and dynamically updating
them. Becausét combines both methods, it has
some of the advantages and disadvantages of both.

Peter Miller

(bl/lib/en/user-guide/c4.6.s0)

UserGuide

no longer required.

If a DMT can only support this kind of include
file dependencies, it is not suitable for use with
Aegis.

5.1.2.2. Dynamic

In order for a DMT to be suitable for use with
Aegis, it is essential that rules for the DMT may
be specikd in such a way that include file depen-
dencies are determined "on the fly" when the
DMT is determining if a gien rule is applicable,
and before the rule is applied.

This method siérs from the problem being
rather slow; but this is amenable to some caching
and the losses of performance are not as bad as
could be imagined.

This method has the aalwtage of correctness in
all cases, where a static file may at times be out-
of-date.

5.2. Derdlopment Directory Style

The project configuration file, usually called
aegis.conf contains a field calledlevelopment_-
directory_stylewhich controls har the project

sources are presented to the DMT.

Seeaepconfb) for a complete description of this
field.

There is a correspondirigtegration_directory_-
stylefield, which defaults to the same value as the
development_directory_styldt is usually a ery
bad idea if these tware different.

5.2.1. \lew Path

By not settingdevelopment_directory_styh all
the only sourceiles present in the gelopment
directory are sourceilés being create and/or
modified.

By using information provided by the
$seach path substitution, the build can access
the unchanged source files in the branch baseline
and deeper branch baseline$he great thing
about this approach is that there are also "precom-
piled" object files on the vigpath, so if an object
file does not need to be compiled (there are no
soure fles in the deelopment directory that ve
arything to do with it) then the build can simply
link the unchanged objecilds in the baseline
without recompiling.

This kuild method scales the best, and is the
Aegis default.

Page 69

User Guide

The diffi culties of fnding a DMT which is capa-
ble of coping with a vie path means that this is
not the only wark area style. All other methods
scale less well than a viepath; some scalmuch
less well.

5.2.2. Linkthe Baseline

The first two sub-fields of interest in the
development_directory_stylare source_file_link
andsource_file_symlink

source_ite_link = true; This field is true if hard
links are to be used for project sourdesf
(which are not part of the change) so that
the work area has a complete set of source
files.

source_ife_symlink = true;This field is true if
symbolic links are to be used for project
source iles (which are not part of the
change) so that theork area has a com-
plete set of source files.

By using these settings, all source files are present
in the deelopment directory They will be read-
only. As you decide to modifyiles in the change
set, theaecpcommand will remee the link and
replace it with a read-write cgpf the file.

You need both these sub-fields set, because hard
links are not allwed to cross file system bound-
aries. Agis will use hard links in preference to
soft links when it can.

Maintaining the hard links can be time consuming
for large projects, and add quite a noticeable
delay before builds start doingyhing. Butsee
the —assume-symbolic-linkeption of theael(1)
command; use it sparingly.

The biggest penalty with this method is that the
initial build for a change set for a tg project
can beverytime consuming.Recall that the base-
line has a complete "praitd" already @ailable.

To take advantage of these pre-built desil files,
there are a f@ more sub-fields:

derived_ile_copy = true; This field is true if
copies are to be used for non-souritesf
which are present in the project baselioé b
which are not present in the work area, so
that the vork area has a complete set of
derived files.

derived_at_start_only = trueThis settign causes
the abee fields controling the appearance
of deried files to be acted upon only when
the deelopment directory is created (at
aedi{1) time).

Page 70

(bl/lib/en/user-guide/c4.6.s0)

Aegis

Copying files can be very time consuming and
also eats a lot of disk space. If you are prepared
to change your build slightlyt is possible to use
the following fields:

derived_ile_link = true; This field is true if hard
links are to be used for non-sourded
which are present in the project baselioé b
which are not present in the work area, so
that the vork area has a complete set of
derived files.

derived_ile_symlink = true;This field is true if
symbolic links are to be used for non-
source iles which are present in the project
baseline but which are not present in the
work area, so that the work area has a com-
plete set of devied files.

Just as for source files, hard links will be used in
preference to symbolic links if possible.

Note thatewveryrule in your Malefile (or whateer
your DMT uses)must remove its outputs before
doing elything else, to break the links to thHke$

in the baseline, otherwise you will corrupt the
baseline. Agis tries ery hard to ensure that the
baseline files (and thus the links) are read-csuly
that you get an error from the build if you det

to break a link.

This development directory style is called "arch
style" after Dm Lords arch (tla) which does
something very similar.

If you are placing anxasting project under Agis,
do the abwe three things one step at a tineirst
get the source filesvailable and integrate thatn

a ®econd change set get ded file copies vork-
ing. In a third change set (if you do it at all)
change the build and use ded file links.

5.2.3. CopyAll Sources

The sub-fields of interest in théevelopment_-
directory_stylds source_file_copy

source_ife_copy = true; This field says copies
are to be used for project sourcded
(which are not part of the change) so that
the work area has a complete set of source
files. Filemodification time attributes will
be preserved.

By using this setting, all sourcides are present in
the deelopment directory They will be read-
only. As you decide to modifyiles in the change
set, theaecpcommand will remee the file and
replace it with a read-write cgpf the file.

Peter Miller

Aegis

Maintaining the copies can be time consuming for
large projects, and add quite a noticeable delay
before lilds start doing arthing. But see the
—assume-symbolic-linksoption of the ael(1)
command; use it sparingly (yes, it applies to
copies as well).

The biggest penalty with this method is that the
initial build for a change set for a large project
can beverytime consuming. Recall that the base-
line has a complete "praitd" already aailable.

To take advantage of these pre-built desil files,
there are a f@ more sub-fields:

derived_ile_copy = true;This says copies are to
be used for non-sourcelels which are
present in the project baselinet livhich are
not present in the work area, so that the
work area has a complete set of dedi
files.

derived_at_start_only = trueThis setting causes
the abwoe fields controlling the appearance
of derived files to be acted upon only when
the deelopment directory is created (at
aedi{1) time).

This development directory style is called "CVS

style" after GNU CVS which does something

very similar.

5.2.4. Obsoletd-eatures

There are seral fields in the aegis.conffile
which are obsolete.Aegis will automatically
transfer these to createdavelopment_directory_-
styleif you haven’t specified one.

create_symlinks_before_buil@his is like stting
both development_directory_style.source_-
file_symlink and development_directory -
style.derived_file_symlinkt the same time.

remove_symlinks_after_buildhis is like setting
the development_directory style.during_build_-
onlyfield.

create_symlinks_before_integration_builchis is
like <tting both integration_directory_-
style.source_file_symlinknd integration_-
directory_style.derived_file_symlinkt the
same time.

remove_symlinks_after_integration_buil@his is
like $tting the integration_directory -
style.during_build_onlyield.

Aegis will print a warning if you use grof these
fields.

Peter Miller (bl/lib/en/user-guide/c4.2.s0)

UserGuide

Page 71

User Guide

5.3. UsingCook

The Cookprogram is the only dependgnmain-

tenance tool, known to the authaevhich is suf-

ficiently capable to supply A&’ needs® Tools

such ascakeand GNU Male are described later
They need a special tweak to meatem work.

This section describes appropriate contents for the
Howto.cookfile, input to thecool(1) program. It

also discusses thmild_commandandintegrate_-
build_commandand link_baselineand change_-
file_command and project_file_commandand
link_integration_directoryfields of the confura-

tion file. Seeaepconf5) for more information
about this file.

5.3.1. Invoking Cook

The build_commandield of the configurationile
is used to moke the releant build command.In
this case, it is set as follows

build_command =
"cook -b ${s Howto.cook} -ni\
project=$p change=%c version=$v";

This command tells Cook where tind the
recipes. The${s Howto.cook} expands to a
path into the baseline duringwopment if the
file is not in the change. Look iaesul§5) for
more information about command substitutions.

The recipes which folle will all remaove their tar
gets before constructing them, which quesf
them for the next entry in the configuration file:

link_integration_directory = true;

The links must be renved first, otherwise the
baseline would cease to be self-consistent.

5.3.2. TheRecipe File

The file containing the recipes is called
Howto.cookand is gien to Cook on the com-
mand line.

The following items are preamble to the rest of
the file; they ask Aegis for the source files of the
project and change so that Cook can determine
what needs to be compiled and linked.

18 The \ersion in use when writing this section
was 15. All versions from 1.3 onwards are kmo
to work with the recipes described here.

Page 72

(bl/lib/en/user-guide/c4.2.s0)

Aegis

project_files =
[collect_lines aelpf
-p [project] -c [change]];
change_files =
[collect_lines aelcf
-p [project] -c [change]];
source_files =
[stringset [project_files]
[change_files]];

This example continues the one from chapter 3,
and thus has a singleeeutable to be linked from
all the object files
object_files =
[fromto %.y %.0 [match_mask %.y
[source_files]]]
[fromto %.| %.0 [match_mask %.I
[source_files]]]
[fromto %.c %.0 [match_mask %.c
[source_files]]]

It is necessary to determine if this is avelep-
ment lild, and thus has the baseline for addi-
tional ingredients searches, or an @ntgion
build, which does not.The version supplied by
Aegis will tell us this information, because it will
be major.minorCchange for development hiilds
andmajor.minorDdeltafor integration builds.

if [match_mask %1C%?2 [version]] then

baseline = [collect aegis -cd -bl

-p [project]];
search_list = . [baseline];

}

The seach list variable in Cook is the list of
directories to search for dependencies; itdi$

to only the current directoryThe resolvebuiltin
function of Cook may be used to ask Cook for the
name of theife actually used to resavdepen-
dencies, so that recipe bodies may reference the
appropriate file:

example: [object_files]

[cc] -0 example
[resolve [object_files]]
-ly -II;
}

This recipe says that to Cook the example pro-
gram, you need the object files determined earlier
and them link them togetheObject files which
were up to date in the baseline are used whkere
possible, bt files which were out of date are con-
structed in the current directory and those will be
linked.

Peter Miller

Aegis

5.3.3. TheRecipe for C

Next we need to tell Cook o to manage C
sources. Othe surface, this is a simple recipe:

%.0: %.c

{

rm %.0;
[cc] [cc_flags] -c %.c;

Unfortunately it has forgotten about finding the
include file dependencies. The Cook package
includes a program called incl which is used to
find them. The recipe mobecomes

%.0: %.c: [collect c_incl -eia %.c]

{
rm %.0;
[cc] [cc_flags] -¢c %.c;

The file may not abays be present to be rerenl
(causing a dtal error), and it is irritating to
execute a redundant command, so the resnis
mangled to look lik this:

%.0: %.c: [collect c_incl -eia %.c]

if [exists %.0] then
rm %.0
set clearstat;
[cc] [cc_flags] -c %.c;

}

The "set clearstat" clause tells Cook that the com-
mand will invalidate parts of itstatcache, and to
look at the command for what tovatidate.

Another thing this recipe needs is to use the base-
line for include files not in a change, and so the
recipe is altered again:

%.0: %.c: [collect c_incl -eia
[prepost "-I" ™" [search_list]]
%.c]

{
if [exists %.0] then
rm %.0
set clearstat;
[cc] [cc_flags] [prepost "-I" "
[search_list]] -c %.c;

}

See theCook Reference Manuédr a description
of the prepostbuiltin function, and other Cook
details.

There is one last change that must be made to this
recipe, it must use the reselfunction to refer
ence the appropriatéde once Cook has found it
on the search list:

Peter Miller

(bl/lib/en/user-guide/c4.2.s0)

UserGuide

%.0: %.c: [collect c_incl -eia
[prepost "-I" " [search_list]]
[resolve %.c]]

if [exists %.0] then
rm %.0
set clearstat;
[cc] [cc_flags] [prepost "-I" ™"
[search_list]] -c [resolve %.c];

}

Only use this last recipe for C sources, the others
are only shown so that the detion of the recipe

is clear; while it is very similar to the original, it
looks daunting at first.

5.3.3.1. Cinclude Semantics
The semantics of C include direes make the

#include " filenamé

directive dangerous in a project ddoped with
the Aegis program and Cook.

Depending on the age of your compilehether

it is AT&T traditional C or newer ANSI C, this
form of directve will search first in the current
directory and then along the search path, or in the
directory of the includingile and then along the
search path.

The first case is fairly benign, except that compil-
ers are rapidly becoming ANSI C compliant, and
an operating system upgrade could result in a
nasty surprise.

The second case is badwse If the source file is
in the baseline and the include file is in the
change, you dohwant the sourceilé to use the
include file in the baseline.

Always use the

#include < filename

form of the include directe, and set the include
search pathxlicitly on the command line used
by Cook.

Cook is able to dynamically adapt to includle f
dependencies, because ythare not static. The
presence of an include file in a change means that
ary file which includes this include file, whether
that source file is in the baseline or in the change,
must hae a épendeng on the change include
file. Potentiallyfiles in the baseline will need to
be recompiled, and the object file stored in the
change, not the baseline. Subsequent linking
needs to pick up the object file in the change, not
from the baseline.

Page 73

User Guide

5.3.4. TheRecipe for Yacc

Having explained the compldies of the recipes
in the abee sction about C, the recipe for yacc
will be given without delay:

%.c %.h: %.y

if [exists %.c] then
rm %.c
set clearstat;
if [exists %.h] then
rm %.h
set clearstat;
[yacc] [yacc_flags] -d
[resolve %.y];
mv y.tab.c %.c;
mv y.tab.h %.h;
}

This recipecould be jazzed up to cope with the
listing file, too, if that was desired, but this is suf-
ficient to work with the example.

Cook’s apility to cope with transitie cependen-
cies will pick up the generated .tef and con-
struct the necessary .o file.

5.3.5. TheRecipe for Lex

The recipe for Ir is vary similar to the recipe for
yacc.

%.c: %.1

if [exists %.c] then
rm %.c
set clearstat;
[lex] [lex_flags] -d [resolve %.1];
mv lex.yy.c %.c;

}

Cook’s avility to cope with transitie dependen-
cies will pick up the generated .c file and con-
struct the necessary .o file.

5.3.6. Recipegor Documents

You can format documents, such as user guides
and manual entries with Aegis and Cook, and the
recipes are similar to the ones a@o

%.ps: %.ms: [collect c_incl -r -eia
[prepost "-1" " [search_list]]
[resolve %.ms]]

if [exists %.ps] then
rm %.ps
set clearstat;
roffpp [prepost "-I" "
[search_list]] [resolve %.ms]
| g roff -p -t-ms
> [target];

Page 74

(bl/lib/en/user-guide/c4.3.s0)

Aegis

This recipe says to run the document through
groff, with the pic(1) andtbl(1) filters, use the
mg7) macro package, to produce PostScript out-
put. Theroffpp program comes with Cook, and is
like soelim(1) but it accepts include search path
options on the command line.

Manual entries may be handled in a similar way

%.cat: %.man: [collect c_incl -r -eia
[prepost "-1" " [search_list]]
[resolve %.man]]

if [exists %.cat] then
rm %.cat
set clearstat;
roffpp [prepost "-I" "
[search_list]] [resolve %.man]
| g roff -Tascii -t -man
> [target];

5.3.7. Templates

The lib/config.example/coofile in the Aegis dis-
tribution contains all of the alwe mmmands, so
that you may readily insert them into your project
configuration file.

Peter Miller

Aegis

5.4. UsingCake

This section describes Woto use cake as the
dependeng maintenance tool.The cakepackage
was published in theecomp.sources.uniSENET
newvsgroup volume 12, around February 1988,
and is thus easily accessible from the ynan
archives aound the internet.

It does not hae a garch path of gnform,
not ezen something like VPATH. It does, hov-
evea, have facilities for dynamic include ile
dependencies.

5.4.1. Invoking Cake

The build_commandield of the configurationile
is used to moke the releant build command.In
this case, it is set as follows

build_command =
"cake -f ${s Cakefile} \
-DPROJECT=$p -DCHANGE=$c \
-DVERSION=$V";

This command tellgakewhere to ind the rules.
The${s Cakefile} expands to a path into the
baseline during delopment if the ile is not in
the change. Look imesul§5) for more informa-
tion about command substitutions.

The rules which foller will all remove their tar
gets before constructing them, which quesif
them for the next entry in the configuration file:

link_integration_directory = true;

The links must be renved first, otherwise the
baseline would be corrupted by igtation huilds.

Another field to be set in this file is

development_directory_style =

{
h

which tells Agis to maintain symbolic links
between the delopment directory and the base-
line. This also requires that rules rexe teir
targets before constructing them, to ensure that
rules do not attempt to write their results onto the
read-only versions in the baseline.

source_file_symlink = true;

5.4.2. TheRules File

The file containing the rules is call&hkefileand
is given to cake on he command line.

The followving items are preamble to the rest of
the file; they ask Aegis for the source files of the
project and change so that eakan determine
what needs to be compiled and linked.

Peter Miller

(bl/lib/en/user-guide/c4.3.s0)

UserGuide

#define project_files \

[[aelpf -p PROJECT \
-c CHANGE][;

#define change_files \

[[aelcf -p PROJECT \
-c CHANGE][;

#define source_files \

project_files change_files

#define CC gcc
#define CFLAGS -O

This example parallels the one from chapter 3,
and thus has a singleeeutable to be linked from
all the object files

#define object_files \
[[sub -i X.c %.0 source_files]] \
[[sub -i X.y %.0 source_files]] \
[[sub -i X.l %.0 source_files]]

Constructing the program is straightforward

example: object_files
rm -f example
CC -0 example object_files

This rule says that to construct the example pro-
gram, you need the object files determined earlier
and them link them togetheObject files which
were up to date in the baseline are used wiere
possible, but files which were out of date are con-
structed in the current directory and those will be
linked.

5.4.3. TheRule for C

Next we need to tell cak how to manage C
sources. Othe surface, this is a simple rule:

%.0: %.c
CC CFLAGS -c %.c

paralleling that found in most me&, hovever it

needs to delete the targesf, and to woid delet-

ing the.ofile wheneer cake thinks it is transitie.
%.0!: %.c

rm -f %.0
CC CFLAGS -¢c %.c

The -f option to therm command is because the
file does not alays exist.

Unfortunately this rule omits finding the include
file dependencies. The @akackage includes a
program callecccincl which is used toifid them.
The rule nav becomes

%.0!: %.c* [[ccincl %.c]]
rm -f %.0
CC CFLAGS -c %.c

This rule is a little quirk about include ifes
which do not yet exist,li must be constructed by

Page 75

User Guide

some other rule.You may want to useycc -MM
instead, which is almost as quirtwhen used with
cake. Another alternatve, used by the author
with far more success, is to use thdncl pro-
gram from thecookpackage, mentioned in an ear
lier section. The gcc -MMunderstands C include
semantics perfectlythe ¢_incl command caches
its results and thus goesster so you will need to
figure which you most want.

5.4.3.1. IncludeDirectives

Unlike cookdescribed in an earlier section, using
cake as described here allows you to continue
using the

#include " filenamé&

form of the include directe. This is because the
development directory appears, to the compiter
be a complete cgpof the baseline.

5.4.4. TheRule for Yacc

Having explained the complexities of the rules in
the ab@e sction about C, the rule for yacc will
be gven without delay:

#define YACC yacc
#define YFLAGS

%.c! %.h!: %.y if exist %.y
rm -f %.c %.h y.tab.c y.tab.h
YACC YFLAGS -d %.y
mv y.tab.c %.c
mv y.tab.h %.h

This rule could be jazzed up to cope with the list-
ing file, too, if that was desired, but this is suf-
ficient to work with the example.

Cakes aility to cope with transitie dependen-
cies will pick up the generated file and con-
struct the necessargfile.

5.4.5. TheRule for Lex

The rule for le& is vary similar to the rule for
yacc.

#define LEX lex
#define LFLAGS

%.c!l: %.1 if exist %.l
rm -f %.c
LEX LFLAGS %.1
mv lex.yy.c %.c

Cakes avility to cope with transitie cependen-
cies will pick up the generated file and con-
struct the necessargfile.

Page 76

(bl/lib/en/user-guide/c4.4.s0)

Aegis

5.4.6. Ruledor Documents

You can format documents, such as user guides
and manual entries with Aegis and cake, and the
rules are similar to the ones abo

%.ps!: %.ms* [[soincl %.ms]]
rm -f %.ps
groff -s -p -t -ms %.ms > %.ps

This rule says to run the document through fgrof
with the soelin{1) and pic(1) andtbl(1) filters,
use the mg7) macro package, to produce
PostScript output.

This suffers from man of the problems with
include files which need to be generated, as does
the C rule, abee. You may want to use_incl -r
from thecookpackage, rather than tleinclsup-
plied by thecakepackage.

Manual entries may be handled in a similar way

%.cat!: %.man* [[soincl %.man]]
rm -f %.cat
groff -Tascii -s -t -man %.man \
> %cat

Peter Miller

Aegis

5.5. UsingMake

The makg1) program exists in mgrforms, usu-
ally one is mailable with eactuNix version. The
one used in the writing of this section GN\NU
Make 370, available by anonymous FTP from
your nearest GNU arcle ste. GNU Make was
chosen because it was the most powerful, it is
widely available (usually for little or no cost) and
discussion of the alternaéis (SunOS make, BSD
4.3 make, etc), auld not be uniersally applica-
ble. "Plainvanilla" make (with no transitve do-
sure, no pattern rules, no functions) is not suf-
ficiently capable to satisfy the demands placed on
it by Aegis.

With the introduction of thedevelopment_ -
directory_stylefield of the project corguration
file, ary project which is currently using a "plain
vanilla" make may continue to use it, and still
manage the project using Aegis.

As mentioned earlier in this chaptemakeis not
really suficient, because it lacks dynamic include
dependencies. hwever, GNU Make has a form

of dynamic include dependencies, and it hasa fe
quirks, but mostly works well.

The other feature lacking imakeis a search path.
While GNU Male has functionality called
VPATH, the implementation le@s ssmething to
be desired, and carbe wsed for the search path
functionality required by Agis. Becausef this,
the development_directory_style.source_file_-
symlinkfield of the project configuration file is set
to true so that Aegis will arrange for the\d#op-
ment directory to be full of symbolic links, mak-
ing it appear that the entire project source is in
each change’devdopment directory.

5.5.1. Irnvoking Make

The build_commandfeld of the project coigu-
ration fle is used to imoke te releant huild
command. Irthis case, it is set as follows

build_command =
"gmake -f ${s Makefile} project=$p \
change=$c version=%v";

This command tells makwhere to iind the rules.
The${s Makefile} expands to a path into the
baseline during delopment if the file is not in
the change. Look imesul§5) for more informa-
tion about command substitutions.

The rules which foller will all remove their tar
gets before constructing them, which quesf
them for the next entry in the configuration file:

Peter Miller

(bl/lib/en/user-guide/c4.4.s0)

UserGuide

link_integration_directory = true;

The fles must be remad first, otherwise the
baseline would be corrupted by igtation lilds
(or even by devdoper builds, if your arem’using
a eparate user for the project owner).

Note: if you are migrating anxgsting projectdo
not set this feld; only set it after you hae
changedall of the Male rules. Ifin doubt,don’t
set this field.

Another field to be set in this file is

development_directory_style =

{
3

which tells Aegis to maintain symbolic links
between the delopment directory and the base-
line for source files (but not deed files). See
aepcon(fb) for more information.

source_file_symlink = true;

5.5.2. TheRule File

The fle containing the rules is calleblakefile
and is gven to make on he command line.

The following items are preamble to the rest of
the file; they ask Aegis for the source files of the
project and change so that reakan determine
what needs to be compiled and linked.

project_files :=\
$(shell aelpf -p $(project) \
-c $(change))
change_files :=\
$(shell aelcf -p $(project) \
-c $(change))
source_files :=\
$(sort $(project_files) \
$(change_files))
CC :=gcc
CFLAGS :=-0

This example parallels the one from chapter 3,
and thus has a singleeeutable to be linked from
all the object files
object_files :=\
$(patsubst %.y,%.0,$(filter \
%.y,$(source_files))) \
$(patsubst %.1,%.0,$(filter \
%.1,$(source_files))) \
$(patsubst %.c,%.0,$(filter \
%.c,$(source_files)))

Constructing the program is straightf@nd,
remembering to renve the target first.

Page 77

User Guide

example: $(object_files)
rm -f example
$(CC) -0 example $(object_files) \
-ly -lI

This rule says that to makhe example program,
you need the object files determined eaylaad
them link them togetherObject files which were
up to date in the baseline are used wiangossi-
ble, but fles which were out of date are con-
structed in the current directory and those will be
linked.

5.5.3. TheRule for C

Next we need to tell mak how to manage C
sources. Othe surface, this is a simple rule:

%.0: %.C
$(CC) $(CFLAGS) -c $*.c

This example matches the built-in rule for most
makes. Butit forgets to remee the target before
constructing it.

%.0: %.c
rm -f $*.0
$(CC) $(CFLAGS) -c $*.c

The target may not yet exist, hence theption.

Something missing from this rule is finding the
include file dependencies. The GNU Mallser
Guide describes a method for obtaining include
file dependenciesA set of dependencfiles are
constructed, one pecfile.

%.d: %.c
rm -f %.d
$(CC) $(CFLAGS) -MM $*.c \
| s ed’'s/"\(:*).0:\l.o\l.d:/'\
> $*.d

These dependewndiles are then included into the
Makefileto inform GNU Male o the dependen-
cies.

include $(patsubst \
%.0,%.d,$(object_files))

GNU Malke has the property of making sure all its
include files are up-to-date. If arare not, thg
are made, and then GNU MaRarts wer, and re-
reads the Madfile and the includeiles from
scratch, before proceeding with the operation
requested. Inhis case, it means that our depen-
deng construction rule will be applied beforeyan
of the sources are constructed.

This method is occasionally quyrkabout absent
include fles which you hee yet to write, or
which are generated and dbyét eist, but this is
usually easily corrected, though you do need to

Page 78

(bl/lib/en/user-guide/c4.4.s0)

Aegis

watch out for things which will stall an irgea-
tion.

The -MM option to the $(CC) command means
that this rule requires thgee program in order to
work correctly It may be possible to use
c_incl(1) from cook, orccincl(1) from cale to
build the dependenyclists instead; tt they don't
understand the conditional preprocessing as well
asgccdoes.

This method also suffers when heterogeneous
development is performedIf you include difer-

ent iles, depending on the environment being
compiled within, thed files may be incorrect, and
GNU Make has no way of knowing this.

5.5.3.1. IncludeDirectives

Unlike cookdescribed in an earlier section, using
GNU Make as escribed here allows you to con-
tinue using the

#include " filenamé&

form of the include directe. This is because the
development directory appears, to the compiter
be a complete cgpof the baseline.

5.5.4. TheRule for Yacc

Having explained the complexities of the rules in
the ab@e sction about C, the rule for yacc will
be gven without delay:

%.c %.h: %.y
rm -f $*.c $*.h y.tab.c y.tab.h
$(YACC) $(YFLAGS) -d $*.y
mv y.tab.c $*.c
mv y.tab.h $*.h

This rulecould be jazzed up to cope with the list-
ing file, too, if that was desired, but this is suf-
ficient to work with the example.

GNU Make’s ability to cope with transitie do-
sure will pick up the generated file and con-
struct the necessargfile.

To prevent GNU Male throwing awvay the transi-
tive files, and thus slowing things down in some
cases, makthem precious:

.PRECIOUS:\
$(patsubst %.y,%.c,$(filter \
%.y,$(source_files))) \
$(patsubst %.y,%.h,$(filter \
%.y,$(source_files)))

5.5.5. TheRule for Lex

The rule for le& is vary similar to the rule for
yacc.

Peter Miller

Aegis

%.c: %.
rm -f $*.c lex.yy.c
$(LEX) $(LFLAGS) $*.I
mv lex.yy.c $*.c

GNU Make’s ability to cope with transitie do-
sure will pick up the generated file and con-
struct the necessargfile.

To prevent GNU Male throwing away the transi-
tive files, and thus slowing things down in some
cases, makthem precious:

.PRECIOUS: \
$(patsubst %.1,%.c,$(filter \
%.1,$(source_files)))

5.5.6. Ruledor Documents

You can format documents, such as user guides
and manual entries with s and GNU Mak,
and the rules are similar to the onesvabo
%.ps: %.ms
rm -f $*.ps
groff -p -t -ms $*.ms > $*.ps

This rule says to run the document through fgrof
with the pic(1) andtbl(1) filters, use themg7)
macro package, to produce PostScript output.

This omits include ife dependencies. If this is
important to you, the_incl program fromcook
can be used tarfd them. Filtering its output can
then produce the necessary depengéies to be
included, rather lik the C rules, abe.

Manual entries may be handled in a similar way

%.cat: %.man
rm $*.cat
groff -Tascii -s -t -man $*.man \
> $*.cat

5.5.7. OtherMakes

All of the abwe dscussion assumes that GNU
Make and GCC are used. If you do not want to
do this, or may not do this because of internal
compaly politics, it is possible to perform all of
the automated features manually.

This may howeve, rapidly become spectacularly
tedious. Br example: if a user needs to gothe
Makefile into their change for anreason, the
will need to constantly usaedl) to "catch up"
with integrations into the baseline.

Reviewvers are also affected: thenust check that
each change to thdakefileaccurately reflects the

object list and the dependencies of each source

file.

Peter Miller

(bl/lib/en/user-guide/c4.5.s0)

UserGuide

5.5.8. Templates

Thelib/config.example/makkle in the Aegis dis-
tribution contains all of the alwe mmmands, so
that you may readily insert them into your project
configuration file.

5.5.9. GNUMake VPATH Patch

Version 3.76 and later of GNU Maknclude this
patch, so you dob’need to read this section
unless you hae GNU Make 375 or earlier.

There is a patchvailable for GNU Male 375

and earlier which ges it improved VPATH
semantics. Athe time it was not maintained by
the same person who maintained GNU klak
Since then, the maintaier changed, and the patch
has been incorporated.

The patch is the wk of Paul D. Smith
<psmith@BayNetwrks.com> and may be
fetched By Anonymous FTP from

Host: ftp.wellfleet.com

Dir: /netman/psmith/gmak
File: vpath+.README
File: vpath+.patchlversion

The version numbers track the GNU Maier-
sion numbers.

For a description of the VRTH problem, and
how this patch addresses it, see the READNKE f
referenced.

5.5.10. GNUMake’s VPATH+

In theory using GNU Male 376 or later (or a
suitable patched earlier version) is similar to
using Cook. The project configuration file ao
requires

link_integration_directory = false;
which is the defult. TheMakefilenow requires
VPATH . bl

Assuming thatl is a symbolic link to the base-
line. The.d files continue to be used.

Page 79

User Guide

5.6. Building Executable Scripts

Aegis treats source files as, well, sourdest
This means that it fgets ay executable bits (and
ary other mode bits) you may set on thie.f
Usually this isnt a problem - except for scripts.

So, just hav do you get Aegis to ge you an
executable script? Well, you add a build rule.
However, dnce it cant depend on itself, it needs
to depend on something else.

Using a Cook example, we could write

bin/%: script/%.sh

{
[* copy the script */
cp script/%.sh bin/%;
/* make it executable */
chmod a+rx bin/%;
/* syntax check */
bash -n bin/%;

}

There is a small amout ofale-added here: we
did a syntax check along theay which catches
all sorts of problems.

The same technique also works for Perl

bin/%: script/%.pl

{
cp script/%.pl bin/%;
chmod a+rx bin/%;
perl -cw bin/%;

}

The same technique also works for TCL

bin/%: script/%.tcl

{
cp script/%.rcl bin/%;
chmod a+rx bin/%;
procheck -nologo bin/%;

}

The procheckl) command is part of the TclPro
package.

Many tools hae a milar options.

You can also combine this with GNU Autoconf to
produce architecture specific shell scripts from
architecture neutral sources.

5.7. GNUAutoconf

If your projects uses GNU Make, GNU Autoconf
and GNU Automake, here is a quick and simple
method to import your project into Aegis and
have it running fairly quickly.

5.7.1. TheSources

Once you hee aeate and Agis project to, your
first change set should simply contain all of the

Page 80

(bl/lib/en/user-guide/c4.7.s0)

Aegis

source files, without renmving or adding ay
thing. Theonly additonal file is the Aegis project
configuration file, usually callechegis.confand
usually located in the topael directory.

Follow the directions in the section, al@ on
using Makeor how to fill out this file.

Note that if you are working from a tarball, yhe
usually contain seeral derivedfile. Thatis, files
which are not primary sourec files, but are instead
derived from other iles. Thisis a conenience for
the end-userut a nuisance at this poinExanple

of derived files in source tarballs includeon-
figure , Makefile.in , config.h.in , etc
You will need to eclude them form theirbt
change set.

In this first change set, you da®ven try to kuild
anything.

build_command = "exit 0";

Which will allow the Aegis process to complete.

5.7.2. Building

You actually get your project toutd in the sec-
ond change set. Once youvkadarted deelop-
ment, you will see all of the source files in the
development directory (well, symlinks to them).

In order to get you build to work, you vea
bootstrap theMakefile . Using the usual GNU
tool chain, this file is generated fromdake-
file.in which is in turn generated from
Makefile.am , and this is not presently in the
development directory.

This is done by creating awerimary sourceife
calledmakefile at the top leel

$ aenf makefile
$

and setting its contents to be

include Makefile
ifndef srcdir

bogus-default-target: Makefile
$(MAKE) $(MAKEFLAGS) $(MAKECMDGOALS)

Makefile: configure Makefile.in config.h.in
rm -f config.cache
Jconfigure

configure: configure.ac
autoconf

config.h.in: configure.ac
autoheader

Peter Miller

Aegis

Makefile.in: Makefile.am
automake

endif

This works becausenakd€l) looks for make-
file before Makefile , but also because our
bootstrapping makefile includes the real
Makefile if it exists, and the realilé’'s rles
will take precedence. Athis point, GNU Mak
has a ery useful feature: it will rebuild include
files which are out-of-date before it doegthimg
else. Inoue n&v devdopment directorythis will
result in the necessarilels being automagically
generated and then acted upon.

Things that can go wrong: mamprojects include
files such agnstall-sh and missing and mkin-
stalldirs in the directilution. You will need to
include rules for these files in the conditonal part
of your bootstrappingnakefile rules.

AUTOMAKE_DIR=/usr/share/automake-1.7

install-sh: $(AUTOMAKE_DIR)/install-sh
cp $ $@

missing: $(AUTOMAKE_DIR)/missing
cp $ $@

mkinstalldirs: $(AUTOMAKE_DIR)/mkinstalldirs
cp $ $@

You will have tell the configure rule that it
depends on these files as well.

Other things that can go wrong: some projects use
different rules for constructing theonfig.h

file. You should read the generatéddake-
file.in file for hawv, and duplicate into the
bootstrappingmakefile file. You may also
need a rule for thaclocal.m4 file, and tell the
configurerule it depends on it.

There is a templatenakefile installed in the
lusr/local/share/aegis/config.exampm&ectory.

Now you can set theuild command field of the
project configuration file:
build_command =
"make "
"project=$project "
"change=$change "
"version=$version";

Aegis watches the eist status of the build com-
mand. Beawae that man build systems which
use recursie make report flse posities, because
the exist status of the sub-neals dten ignored
by the top-lgel Makefle. Thismeans that Agis
may think your project compiles when, in fact, it
does not.

Peter Miller

(bl/lib/en/user-guide/c4.7.s0)

UserGuide

If, while trying to get it to bild, you discwer
more denved files which should not be primary
source files, simply use thaerm(1) command.
The aeclearfl) command may come in handly
too.

Once this second change seiilds, integrate it
via the usual Aegis process.

5.7.3. Tesing

If the project you are importing has testsythee
probably eecuted by saying

$ make check
lots of output
$

or something similar Aegs expects each test to
be in a separate shell script. Usually this is sim-
ple enough to arrange. See the chaptefesting

for some hints.

5.7.4. AnOptimization

The first build in a n& devdopment directory
can be quite time consumindt is possible to
short-ciruit this by using the pre-built objede$
in the baseline.To do this, use the following set-
ting in the project configuration file:

development_directory_style =

{ source_file_symlink = true;
derived_file_copy = true;
derived_at_start_only = true;
h
This causes Aegis to cpmll of the derved file
into your deelopment directory ataedb time.
This is usually much faster than compiling and
linking all over again.

5.7.5. Signed-off-by

It is possible to get the Aés process to automati-
cally append Signed-off-by lines to the
change description. Set the following field in the
project configuration file:

signed_off_by = true;

Only open source projects should use tesdf
The OSDL dehition of the Deeloper’s Certifi-
cate of Origin 1.0 can be found at http://-
www.osdl.org/newsroom/press_releases/2004/-
2004_05 24 dco.html and is defined to mean:

"By making a contriition to this project, | certify
that:

(a) The contribtion was created in whole or in
part by me and | ha the right to submit it under

Page 81

User Guide

the open source license indicated in the file; or

(b) The contribution is based upon yireis work
that, to the best of my kmdedge, is cwered
under an appropriate open source license and |
have the right under that license to submit that
work with modifications, whether created in
whole or in part by me, under the same open
source license (unless | am permitted to submit
under a diferent license), as indicated in thikef

or

(c) The contribution \as provided directly to me
by some other person who certified (a), (b) or (c)
and | hae ot modified it."

5.7.6. Importing the Next Upstream Tarball

If you are using Agis to track your local changes,
but the master sourecs are &bere, you will
need to track upstream changes whery tae
released.

It is tempting to use thaetal) command, but it
will not be able to detect deed files which hae
been added to the tarballYou will need to
uppack the tarball and rem®them manually.

Create a change set in the usual,vend aecdl)
into it. Copy the entire project into your change
set, because you daryet knav what the tarball
will want to change (and it will include
unchanged files).

$ aecd
$ aecp.
$

(Yes, that dot is part of the commandpw you
can unpack the tarballYou need to strip dfthe
leading directory someko (most polite projects
use a prex). The author uses th@ardy(1) com-
mand, lile this:

$ zcat project-x.ytar.gz |\
tardy -rp project-x.y -now | \
tar xf -

$

It pays to change that the tarball is the shape you
expectbeforerunning this command.

At this point you hee to once again reme dl of

the files which are in the tarball, but which are not
primary source files, such asnfigureandMake-
file.inand the like.

$ rm -f configure Makefile.in config.h.in
$ rm -f aegis.log
$

It is useful if you place them(1) command in a
shell script, and tell Agis it is a sourceilg,

Page 82

(bl/lib/en/user-guide/c4.8.s0)

Aegis

because you will hee o do this every time.

Now you can hee Aegs add ag new files by
using the folvoing command:

$ aenf.
$

(Yes, that dot is part of the command\pte that
if there are no ne files, this command will ge
you an errarthis is expected.

You will have o work out moed and remaed
files for yourself, and use thaemyl) and
aerm(1) commands.

At this point you should renve dl the files
which were present in the tarball but which dod
not actually change from the change s&te
follwoing command does this quickly and simply:

$ aecpu -unchanged
$

You change set ne contains the minimum set of
differences. Gahead and complete it using the
usual Aegis process.

5.7.7. Importing the Next Upstream Patch

In contrast to tarballs, patches tend todmechsier
to cope with. In general, all that is necessary is to
use theaepatclil) command, something Bkhis:

$ aepatch -receive -file
$

project-x.ydiff

which will create a change set, check-out only
those file the patch alters, and copes with creates
and remwaes automagically.

There are tw problems with this methodThe
largest problem is patches whicg contain$ thf
derived fiels as well. This is unfortunatelywery
common.

The simplest way of coping with this is to add the
aepatt —trojan option, which will leae te
change in thebeing deelopedstate, where you
can examine it and use thenfyl) command for
ary derived files it insisted on creating as primary
source files.

The second problem is much simpler: if a patch
only contains ne files, Aegis cart’'work out hav
much of the leading path it should ignore on the
filenames in the patchYou will need to use the
aepatt —remove-prefioption in this case.

etc

5.8. NoBuild Required

For some projects, particularly web sites and
those written xclusively in interpreted languages,
it may not be necessary teee actually build your

Peter Miller

Aegis

project.

For this kind of project you add the follang line
to the project configuration file:

build_command = "exit 0";

For a project configured in this ay, the aeddl)
and aeipas$l) commands will not check that a
build has been performed.

5.8.1. Why This May Not Be Such A Good
Idea

It isn’'t aways desirable to coitfure a project this
way, even when it may initialy appear to be a
good idea.

Web stes:

You can use the Uild stage to check the
HTML files against the rel@nt standards
and DTDs. You can also check that all of
you (internal) links are alid, and dort
point to non-existant pages or anchors.
Sometimes, if you he the space, you can
resohe erer side includes, to makit
faster for Apache, by serving static pages.

Interpreted Languages:
A whole lot of simple errors, such as syntax
errors, can be caught by a static check of
the source ifes. For example, theperl
-c option can syntax check your Petes
without executing them. See also the GNU
awk -lint option, the Python Wilt-in
compile() function, and thephp -I
(lower case L) option.You can also check
that all include files referenced actually
exist.

Documentation:
Many systems allow documentation to be
extracted from the source files, and turned
into HTML or PDF fles (e.g. Doxygen).
This is a sensable thing to do at build time.

Peter Miller (bl/lib/en/user-guide/c8.0.s0)

UserGuide

Page 83

User Guide

6. TheDifference Tools

This chapter describes the difference commands
in the project configurationilé. Usually these
commands are used by tleeygis -DIFFerence
command when differencing filesubthey may

be used to accomplish some other things.

The deéult setting is for Aegis to rejedtdhames
which contain shell special characterdhis
ensures thailénames may be substituted into the
commands without worrying about whether this is
safe. Ifyou set theshell_safe_filenamefseld of
the projectaegis.conffile to false , you will
need to surround filenames with tBéquote
filenamé substitution. Thiswill only quote fle-
names which actually need to be quoted, so users
usually will not notice. This command applies to
all of the various filenames in the sections which
follow.

6.1. BinaryFiles

Aegis doesrt particularly care whether youilds
are binary or tet. However, your difference and
merge tools certainly will. In general, you need
format-specit difference and merge tools for
each of theife formats used in your project.
Unfortunately most vendors of software which
malke wse of proprietaryilie formats do not supply
difference and merge tools.

The simplest compromise is to treat aleg as
text, with manual repairs for binary files.

A more elgant solution is to use a shell script
invoked by the diff commandin the project
aegis.confile. Thisshell script examines thdef

to determine theile format, and then runs the
appropriate difference tool. Similar considera-
tions apply to thenelge_commandield.

Please note that this support is not present in
Aegis itself because (a) itauld cause code bloat,
and (b) it is entirely possible to do with a shell
script launched byiff_command

6.2. Interfacing

The dif command is configured by a field of the
project configuration filegegis.conf.

6.2.1. diff_ command

This command is used aed1) to produce a dif-
ference listing when file in the ddopment direc-
tory was originally copied from the currenery
sion in the baseliré

190r this is logically the case.

Page 84

(bl/lib/en/user-guide/c8.1.s0)

Aegis

All of the command substitutions described in
aesuls) are aailable. Inaddition, the follaving
substitutions are alswailable:

${ORiginal}
The absolute path name of a file containing
the version originally copied. Usually in
the baseline.

${Input}
The absolute path name of the edited-v
sion of the fle. Usuallyin the deelopment
directory.

${Output}
The absolute path name of thike in which
to write the diference listing. Usually in
the deelopment directory.

An exit status of 0 means successfukreof the
files differ (and the usually do). An exit status
which is non-zero means something is wrong.

The non-zero»t status may be used teaload

this command with extra tests, such as line length
limits. The difference iles must be produced in
addition to these extra tests.

6.2.2. mege_command

This command is used aed1) to produce a dif-
ference listing when file in the ddopment direc-
tory is out of date compared to the curregitsion

in the baseline.

All of the command substitutions described in
aesuls) are aailable. Inaddition, the follaving
substitutions are alswailable:

${ORiginal}
The absolute path name of a file containing
the version originally copied. Usually in a
temporary file.

${Most_Recent}
The absolute path name of a file containing
the most recent ersion. Usuallyin the
baseline.

${Input}
The absolute path name of the edited-v
sion of the fle. Usuallyin the deelopment
directory Aegs usually mees the source
file aside, so that the output can replace the
source file.

${Output}
The absolute path name of thike in which
to write the diference listing. Usually in
the derelopment directory This is usually
the name of a change source file.

Peter Miller

Aegis

An exit status of 0 means successfukreof the
files differ (and the usually do). An exit status
which is non-zero means something is wrong.

6.3. WhenNo Diff is Required

It is possible to configure a project to omit thd dif
step as unnecessaby the following setting:

diff_command = "exit 0";

This disables all generation, checking aatida-
tion of differenceifes for each change sourdkef
The merge functions of theedif{1) command are
unaffected by this setting.

Peter Miller (bl/lib/en/user-guide/c8.2.s0)

UserGuide

Page 85

User Guide

6.4. Usingdiff and merge

These tw tools are gailable with most flaours

of UNIX, but often in a very limited formOne

severe limitation is thediff3(1) command, which
often can only cope with 200 lines offdifences.
The best alternate is to ise GNU diff, which has
contxt differences wailable, and a dr more

robustdiff3(1) implementation.

See the earlieinterfacingsection for substitution
details.

6.4.1. diff_ command
The entry in the configuration file looks &khis:

diff_command =
"set +e; diff -c $original "
"$input > $output; test $? -le 1*;

This needs a little explanation:

» This command is alays executed with the
shell's-e option enabled, causing the shell tate
on the first errar The "set +e" turns this off.

* The diff(1) command exits with a status of O if
the files are identical, and a status of 1 ifytlg-

fer. Any aher status means something horrible
happened. Th&est" command is used to change
this to the exit status aegis expects.

The —c option says to produce a contexifdifou
may choose to use theai option, to produce uni-
diffs, if your diff command supports it.

You may also wish to consider ignoring white

space in comparisons, as these tend to be cos-

metic changes and noeny interesting to code
reviewers. The-b option of GNU Dif will
ignore changes to the amount of white space, and
the—w option will ignore white space altogether.

Binary files will often cause modern versions of
GNU Diff to exit with an «it status of 2, which is
probably reasonable most of the time. If your
project contains binaryilés, you may want to
treat all files as textiles. Usethe GNU Dif —a
option in this case.

A useful alternatie, available with more recent
versions of GNU Diff, is the-U option. Thisis a

more compact form than thec option, and is
able to gve the whole file as context.

diff_command =
"set +e; diff -U999999 $original "
"$input > $output; test $? -le 1*;

The exit status must onceaag be taylored, he-
eve the output will be the whole source for con-
text, with changes madd by ‘+’ and ‘-’ in the
left magin. This,revievers need only search for

Page 86

(bl/lib/en/user-guide/c8.3.s0)

Aegis

I[-+)/ in order to see all edit made to tlie f

6.4.2. mege_command

Note: Themeiggl) command is better than this
use of thediff3(1) command. See the RCS chap-
ter for more details.

The entry in the configuration file looks &khis:

merge_command =
"(diff3 -e $MostRecent $original \
$input | sed -e w$$/d’ -e \
'I'q$$/d’; echo '1,$$p’) | ed -\
$MostRecent > $output”;

This needs a lot of explanation.

* Thediff3(1) command is used to produce an edit
script that will incorporate into $MostRecent, all
the changes between $original and $inp¥au
may want the-a option, to treat all ifes as
ACSII.

* The sedl) command is used to rem® the
"write" and "quit" commands from the generated
edit script.

» Theed1) command is used to apply the gener
ated edit script to the $MostReceit¢ fand print
the results on the standard output, which are redi-
rected into the $output file.

6.5. Usingfhist

The fhist program by David |. Bell also comes
with two ather utilities,fcompandfmeige, which
use the same minimal difference algorithm.

See the earlieinterfacingsection for substitution
details.

6.5.1. diff_command
The entry in the configuration file looks &khis:

diff_command =
"fcomp -w $original $input "
"-0 $output";

The -w option produces an output of the entire
file, with insertions and deletions madk by
"change bars" in the left mgin. Thisis superior
to context diference, as it shows the entire file as
context.

For more information, see th&comgl) manual
entry.

6.5.2. mege_command
The entry in the configuration file looks &khis:

Peter Miller

Aegis UserGuide

merge_command =
"fmerge $original $MostRecent \
$input -o $output -c /dev/null”;

The output of this command is similar to the out-
put of the merge_command in the last section.
Conflicts are marked in the outputor more
information, see thémeige(1) manual entry.

Peter Miller (bl/lib/en/user-guide/c5.0.50) Page 87

User Guide

7. TheProject Attributes

The project attribtes are manipulated using the
aepdl) command.This command reads a project
attributes file to set the project attutes. This
file can be thought of as\iag several sections,
each of which will be ogered by this chapter
You should see theaepatt(5) manual entry for
more details.

7.1. Descriptionand Access

The descriptionfield is a string which contains a
description of the project.Large amounts of
prose are not required; a single line idisignt.

The default_development_directesy ;

string whid contains the pathna(ri;gweﬁglfdwlgetfr);1
place nev dewelopment diectories. Thepath-
name must be absolutérhis field is only con-
sulted if the uconf(5) field of the same name is not
set. Defaultso SHOME.

The umaskfield is an integer which is set to the
file permission mode maskSee umask?2) for
more information. This value will alWays be
OR’ed with 022, because aegis is paranoid.

7.2. Notification Commands

The develop_end_notify commantield is a
string which contains a command to be used to
notify that a change requiresvieving. All of

the substitutions described @esulf5) are aail-
able. Thidield is optional, if it is not specified no
notification will be issued.This command could
also be used to notify other management systems,
such as progress and defect tracking, in addition
to notifying users.

The develop_end_undo_notify _commafneld is

a gring containing a command used to notify that
a dhange has been withdrawn fronviesv for fur-

ther deelopment. All of the substitutions
described inaesulf5) are &ailable. Thisfield is
optional, if it is not specified no naitation will

be issued.This command could also be used to
notify other management systems, such as
progress and defect tracking, in addition to notify-
ing users.

Thereview_pass_notify _commarffietld is a string
containing the command to notify that theiesv
has passedAll of the substitutions described in
aesuls) are ®ailable. Thisfield is optional, if it

is not specified no notdation will be issued.
This command could also be used to notify other

Aegis

Thereview_pass_undo_notify_commaineld is a
string containing the command to notify that a
review pass has has been rescinded. All of the
substitutions described imesulf5) are aailable.
This field is optional, and dafilts to the
develop_end_notify _commarfietld if not speci-
fied. Ifneither is specified, no notification will be
issued. Thiscommand could also be used to
notify other management systems, such as
progress and defect tracking, in addition to notify-
ing users.

The review_fail_notify_commandeld is a string
containing the command to notify that theiesv
has filed. All of the substitutions described in
aesuls) are ®ailable. Thisfield is optional, if it

is not specied no notification will be issued.
This command could also be used to notify other
management systems, such as progress and defect
tracking, in addition to notifying users.

The integrate_pass_notify_commarfield is a
string containing the command to notify that the
integration has passedAll of the substitutions
described inaesulf5) are &ailable. Thisfield is
optional, if it is not specified no naitation will

be issued.This command could also be used to
notify other management systems, such as
progress and defect tracking, in addition to notify-
ing users.

The integrate_fail _notify_commandield is a
string containing the command to notify that the
integration has diled. All of the substitutions
described inaesulf5) are aailable. Thisfield is
optional, if it is not specified no naitation will

be issued.This command could also be used to
notify other management systems, such as
progress and defect tracking, in addition to notify-
ing users.

7.2.1. Notifcation by email

The aegis command is distifed with a set of
shell scripts to perform these natdtions by
email. Thg ae installed into the
/usr/local/lib/aegis directory by default; the

actual installed directory at your site igadable

as the ${DATa_DIRectory} substitution. The
entries in the project attribute file look dikhis:

management systems, such as progress and defect

tracking, in addition to notifying users.

Page 88

(bl/lib/en/user-guide/c5.0.s0)

Peter Miller

Aegis

develop_end_notify_command =

"$sh $datadir/de.sh $project $change";
develop_end_undo_notify_command =

"$sh $datadir/deu.sh $project $change";
review_pass_notify_command =

"$sh $datadir/rp.sh $project $change \

$developer $reviewer";
review_pass_undo_notify_command =

"$sh $datadir/rpu.sh $project $change \

$developer;
review_fail_notify_command =

"$sh $datadir/rf.sh $project $change \

$developer $reviewer";
integrate_pass_notify_command =

"$sh $datadir/ip.sh $project $change \

$developer $reviewer $integrator";
integrate_fail_notify_command =

"$sh $datadir/if.sh $project $change \

$developer $reviewer $integrator";

Please note: the exit status of all these commands
will be ignored.

7.2.2. Notifcation by USENET

The aegis command is distifed with a set of
shell scripts to perform these notifications by
USENET They are installed into the
lusr/local/lib/aegis directory by default; the
actual installed directory at your site igadable

as the ${DATa_DIRectory} substitution. The
entries in the project attribute file look dikhis:

develop_end_notify_ command =

"$sh $datadir/de.inews.sh $p $c alt.$p";
develop_end_undo_notify_command =

"$sh $datadir/deu.inews.sh $p $c alt.$p";
review_pass_notify_command =

"$sh $datadir/rp.inews.sh $p $c alt.$p”;
review_pass_undo_notify_command =

"$sh $datadir/rpu.inews.sh $p $c alt.$p";
review_fail_notify_command =

"$sh $datadir/rf.inews.sh $p $c alt.$p";
integrate_pass_notify_command =

"$sh $datadir/ip.inews.sh $p $c alt.$p";
integrate_fail_notify_command =

"$sh $datadir/if.inews.sh $p $c alt.$p";

The last agument to each command is thevse
group to post the article in, you may want to use
some other groupNote that "$p" is an abbvia-
tion for "$project” and "$c" is an ablviation for
"$change".

7.3. ExemptionControls

The developer_mayesiew field is a booleanlf

this field is true, then a geloper may reiew her
own change. Thids probably only a good idea
for projects of less than 3 people. The idea is for
as maw people as possible to criticallx@mine a
change.

Peter Miller

(bl/lib/en/user-guide/c5.0.s0)

UserGuide

The developer_may_integratield is a boolean.

If this field is true, then a deloper may intgrate

her own change. This is probably only a good
idea for projects of less than 3 people. The idea is
for as maw people as possible to criticallyxam-

ine a change.

Thereviewer_may_integratéeld is a booleanlf
this field is true, then a veewer may intgrate a
change she wewed. Thisis probably only a
good idea for projects of less than 3 peoplae
idea is for as manpeople as possible to critically
examine a change.

The developers_may_create_changisld is a
boolean. Ifthis field is true then delopers may
create changes, in addition to administrators.
This tends to be a very useful thing, sinceete
opers find most of the bugs.

The default_test_exemptiofield is a boolean.
This field contains what to do when a change is
created with no testxemption specied. The
default is "false”, i.e. no testingxemption, tests
must be provided.

This kind of blankt exemption should only be set
when a project has absolutely no functionality
awailable from the command line;x@amples
include X11 programsThe program could possi-
bly be impraed by providing access to the func-
tionality from the command line, thus allimg
tests to be written.

7.3.1. OnePerson Projects

The entries in the project attributeke ffor a one
person project look | this:

developer_may_review = true;
developer_may_integrate = true;
reviewer_may_integrate = true;
developers_may_create_changes = true;

All of the staf roles (administratgrdevdoper,
reviewer and intgrator) are all set to be the same
user.

7.3.2. wo Person Projects

A two person project has the opportunity for each
to review the others work.

The entries in the project attutes file for a tw
person project look lithis:
developer_may_review = false;
developer_may_integrate = true;

reviewer_may_integrate = true;
developers_may_create_changes = true;

Page 89

User Guide

All of the staf roles (deeloper, reviewer and
integrator) are all set to alloboth users.

7.3.3. Lamger Projects

Once you hee 3 a more staf on a poject, you
can assign all of the roles to separate peophle

idea is for the greatest number of eyes to see each

change and detect flaws before ytheach the
baseline.

The entries in the project attributes file for a three
person project look | this:

developer_may_review = false;
developer_may_integrate = false;
reviewer_may_integrate = false;
developers_may_create_changes = true;

For smaller teams, \@ryone may be a viewer.
As the teams get Iger, the more rperienced
staf are often the r@ewers, rather thanveryone.

7.3.4. RST-eeds

Aegis has the ability to publish RSS 2.0 items to
an RSS channel when changesets transition to a
new state. Thisis an optional feature that must be
enabled and configured via the project-specif
attributes.

Project administrators can configure each change
of state to cause an RSS item to be added to a
specifed RSS channelEach transition is ingid-

ually controlled, allowing each transition to be
recorded in separate channels, or all transitions in
the same channel, or some combination thereof.

Generating RSS items for particular state transi-
tions is enabled by thess:feedfilenameproject-
specific attilute. Theformat of this attribute is:

name = "rss:feedfilename-<filename>";
value = "<state> [<state> <state>]";

The name part of this attribute includes file-
name,which is the name of the RSS fedte f
(channel) to which the item is to be addékhe
valuepart of the attribute is a space-separated list
of states that will cause an RSS item to be added
to the specifiedile. For example,

name = "rss:feedfilename-foo.xml";
value = "awaiting_review
awaiting_integration"”;

will cause items to be added to the channel stored
in the ile "foo.xml" when a changeset transitions
into the avaiting_review and awvaiting_integration
states.

The channel description can be specified using
the rss:feeddescriptiorattribute. Theformat of

Page 90

(bl/lib/en/user-guide/c5.0.s0)

Aegis

this attribute is:

name = "rss:feeddescription-<filenane>";
value = "<Some description>";

For example,

name = "rss:feeddescription-foo.xml";
value = "This is a description";

will cause the <description> sub-element of the
<channel> element stored in the file foo.xml to
have the \alue 'This is a descriptich If this
attribute is not used, the deflt description is:
"Feed of changes in staté...

The channel title can be spéed using the
rss:feedtitleattribute. Theformat of this attribte
is:

name = "rss:feedtitle-<filename>";
value = <Some title>;

For example,

name = "rss:feedtitle-foo.xml";
value = "This is a title";

will cause the <title> sub-element of the <chan-
nel> element stored in the file foo.xml tovieahe
value "Project ...: This is a title" The title will
always start with the word "Project” and the
project name. |If this attribute is supplied, this
default title is appended with the test provided.

The channel language can be specified using the
rss:feedlanguge attribute. The format of this
attribute is:

name = "rss:feedlanguage- filenamé;
value =" language’;
For example,

name = "rss:feedlanguage-foo.xml";
value = "en-AU";

will cause the <language> sub-element of the
<channel> element stored in the file foo.xml to
have the \alueen-AUIf not specifed, the dedult
value of the language sub-element is "en-US".

7.3.4.1. Seving RSS Channels

agyet is able to seevup RSS channels, with an
appropriate URL. An example URL is

http://somehost/cgi-bin/aeget/proj.1.0/?rss+foo.xml

The ley aspect of the URL shown is the
"?rss+foo.xml modifier. "foo.xm! should olvi-
ously be replaced with the name of your RSS
channel feed (that is, the filename specified with
the 'rss:feedfilename project-specified
attribute(s).

Peter Miller

Aegis

In order to read the RSS channels, it is recom-
mended to point your RSS aggaor of choice to

the appropriate URL. In order to nmeakietermin-

ing the URL easyaeget will also place "RSS"
icons neat to the individual state links on the main
project web page'froj.1.0/?menu) if there is an
RSS channel configured to include that changeset
state.

7.3.4.2. Linksin RSS Channels

Links within RSS feed files are stored using a
placeholder ("@@SCRIPTNAME@@") instead
of the serving script in URLs.This is done
because the code that knows about hte URL of a
particular installation is encapsulated within
aeget.

The placeholder is replaced with the real script-
name when the file is served by aeget.

Peter Miller (bl/lib/en/user-guide/c11.0.s0)

UserGuide

Page 91

User Guide

8. Testing

This chapter discusses testing, and using Aegis to
manage your tests and testing.

8.1. Why Bother?

Writing tests is extra ark, compared to the ay
mary small (and some not-so-small) sofire
shops operate. For this reason, the testing
requirement may be turned off.

The win is that the tests hang around Yerg
catching minor and major slips before ythe
become embarrassing "features" in a released
product. Preention is cheaper than cure in this
case, the testswawork down the track.

All of the "extra work" of writing tests is a long-
term win, where old problems ver agan reap-
pear All of the "extra work" of reviewing

changes means that another pair of eyes sees the

code and ihds potential problems before the
manifest themselves in shipped produgtl of
the "extra work" of intgration ensures that the
baseline allays works, and is alays self-consis-
tent. All of the "extra work" of having a baseline
and separate delopment directories allows mul-
tiple parallel deelopment, with no intedevel-
oper interference; and the baselineagis works,

it is never in an 'in-between” stateln each case,
not doing this "extra work" is a false economy.

The existence of these tests, though, is what-deter
mines which projects are most suited t@seand
which are not. It should be noted that suitability
is a continuous scale, not black-and-whiwith
effort and resources, almost anything fits.

8.1.1. Pijects or which Aegis’ Testing is Most
Suitable

Projects most suited to supervision bygieare
straight programs. What the non-systems-pro-
grammers out there call "tools" and sometimes
"applications”. Thesare programs which taka
pile of input, ches on it, and emit a pile of output.
The tests can then compare actual outputs with
expected outputs.

As an example, you could be writing s2d1)
look-alike, a public domain clone of thaux sed
utility. You could write tests whictxercise &ery
feature (insertion, deletion, etcand generate the
expected output with the reaNix sed. You write

the code, and run the tests; you can immediately
see if the output matches expectations.

This is a simple xample. Morecomplex exam-
ples exist, such as Aegis itself. The gis

Page 92

(blllib/en/user-guide/c11.1.s0)

Aegis

program is used to supervise itaro develop-
ment. Ests consist of sequences of commands
and expected results are tested for.

Other types of softare hae keen deeloped
using Aegis: compilers and interpreters, client-
sener model software, magnetic tape utilities,
graphics software such as a ray-tracBne range

is vast, but it is not all types of software.

8.1.2. Pojects for which Aegis’ Testing is Use-
ful

For mary years there hee been full-screen appli-
cations on text terminals. In more recent times
there is increasing use of graphical interfaces.

In developing these types of programs it is still
possible to use Aegisubseveral options need to
be explored.

8.1.2.1. Bsting Via Emulators

There are screen emulators for both full-screen
text and X11 mailable. Usingthese emulators, it

is possible to test the user interface, and test via
the user intedce. Asyet, the author knows of no
freely available emulators suitable for testing via
Aegis. Ifyou find one, please let me kmo

8.1.2.2. LimitedTesting

You may choose to use Aegis simply for its abil-
ity to provide controlled access to a large source.
You 4ill get the history and change mechanisms,
the baseline model, the enforcedvieer. You
simply dont test all changes, because figuring out
what is on the screen, and testing iiagt expec-
tations, is too hard.

If the program has a command line indéee, in
addition to the full-screen or GUI intede, the
functionality accessible from the command line
may be tested using Aegis.

It is possible that "limited testing" actually means
"no testing", if you hee ro functionality accessi-
ble from the command line.

8.1.2.3. Bsting Mode

Another alternatie is to provide hooks into your
program allowing you to substitute a file for user
input, and to be able to trigger the dump of a
"screen image". The simulated user input can
then be fed to the program, and the screen dump
(in some terminal-independent form) can be com-
pared against expectations.

This is easier for full-screen applications, than for
X11 applications. You need to judge the cost-

Peter Miller

Aegis

beneit trade-of. Cost of development, cost of
storage space for X11 images, coshoftesting.

8.1.2.4. ManualTests

The Aegis program provides a manual testilf
ity. It was originally intended for programs which
required some pfsical action from a usgsuch as
"unplug Ethernet cable wg or "mount tape
XG356B nav". It can also be used tovea wser
confrm that some on-screen adty has hap-
pened.

The problem with manual tests is thatytlsanply
don't happen. lItis far more pleasant to say "run
the automatic tests" and go for a cup offeef
than to wait while the computer thinks of mind-
less things to ask you to doThis is human
nature: if it can be automated, it is more likely to
happen.

8.1.2.5. UnitTests

Many folks think of testing as taking théndl
product and testing itlt is also possible touild
specialized unit tests, whiclxescise specific por
tions of the code. These tests can then be admin-
istrated by Aegis,wn if the full-blown GUI can-

not be.

8.1.3. Ppojects for which Aegis’ Testing is
Least Useful

Another class of software is thingsdikperating
system kernels andrinware; things which are
"stand alone". This isolated nature makes it the
most dificult to test: to test it you want to pide
physical input and watch the physical outpuBy

its very nature, it is hard to put into a shell script,
and thus hard to write an Aegis test for.

The aboe dapter was written in 1991. At this
writing (1999) there are projects déikLinux and
operating systems kk VxWorks. Theseare all
embedded, and all @ exellent network and
download support.It is entirely possible (with
design support!) to write automatically testable
embedded systems.

8.1.3.1. OperatingSystems

It is not impossible, just thateof us havethe
resources to do itYou need to hae a est system
and a testing system: the test system has all of its
input and outputs connected to the outputs and
inputs of the testing system. That is, the testing
system controls and dss the test system, and
watches what happens.

Peter Miller

(blllib/en/user-guide/c11.1.s0)

UserGuide

For example, in the olden days beforeegone
had PC and graphics terminals, there were only
serial interfaces \ailable. Mary operating sys-
tem \endors tested their products by using com-
puters connected to each serial line to simulate
"user input". The system can be rebooted this
way, and using dual-ported disks allows fdifent
versions of a kernel to be tried, or other test con-
ditions created.

For software houses which write kernels, or
device drivers for kernels, or some otheerkel
work, this is bad nss: the Aegis program is
probably not for you. It is possible, but there may
be more cost-&ctive devdopment stratgies. Of
course, you could alys use the rest of Ays,
and ignore the testing part.

However, Aegs has been used quite successfully
to develop Linux kernel modulesWith suitable
suddql) configuration to permit access ins-
mod1) &co, developers can write test scripts
which load device dvers, try them out, and
unload them again, all without wersal root
access.

Also, the adent of modern tools, such as
VMware, which allav one operating system to
"host" anothermay also permit straightforavd
testing of kernels and operating systems.

8.1.3.2. Firmwarre

Firmware is a similar deal: you need somaywio
download the code to be tested into the test sys-
tem, and write-protect it to simulate ROM, and
have the necessary hardwe to dwe the inputs
and watch the outputs.

As you can see, this is generally netikble to
run-of-the-mill software houses, but then ythe
rarely write frmware, either Those that do write
firmware usually hee the download capabilities,
and some kind of remote operation facility.

However, this omits the possibility of not only
cross compiling your code for the target system,
but also compiling your code to run nedly on
the build system. Therfware (in the host incar
nation) then falls into one of the cgteies abuwe,
and may be readily tested:his does not relie
you of also testing thdarfinware, hut it increases
the probability that theifmware isnt completely
useless before you download it.

By using an object oriented language, such as
C++, the polymorphism necessary to cope with
multiple environments can be ghatly hidden
behind a pure abstract base clasgdternatively,

Page 93

User Guide Aegis

by using a consistent API, you can accomplish the
necessary sleight-of-hand at link time.

The unit test method mentioned earlier is also
very useful for frmware, @en if the device "as a
whole" cannot be tested.

Page 94 (bl/lib/en/user-guide/c11.2.s0) Peter Miller

Aegis

8.2. Writing Tests

This section describes a number of general guide-
lines for writing better tests, and some gif to
be avoided.

There are also a number of suggestions for porta-
bility of tests in specific scripting languages; this
will definitely be important if you are writing
software to publish on WWW or for FTHPorta-
bility is often requiredwithin an oganization,
also. Examplefclude a change in compapol-

icy from one 38@UNIX to another (e.g. compgn
doesnt like Linux, nav you must use B&T’s
SVR4 ofering), or the deelopment team usgcc
until the compay finds out and forces you to use
the prototype-less compiler supplied with the
operating system, owen that the software being
developed must run under botbnix and Wn-
dows NT.

Note, also, that when using Aegis’ heterogeneous
build support, portability will again feature
prominently.

8.2.1. Contributors

I'd like t thank Stgen Knight
<knight@baldmt.com> for writing portions of
this information.

If other readers he alditional testing techniques,
or use other scripting languages, contributions are
welcome.

8.2.2. GeneralGuidelines

This section lists a number of general guidelines
for all aegis tests, gardless of implementation
language. Usehis section to guide ®o you
write tests if the scripting language you choose is
not specifically cuered in greater detail belo

8.2.2.1. Choiceof Scripting Language

The aegis program uses tiest commandeld of
the projectaegis.confile to specify hw tests are
executed. Thedefault value of théest command
field:

test_command = "$shell $file_name";

specifes that tests be Bourne shell script%u
may;, howeve, change the value dést_command

to specify some other scripting language mnter
preter which allovs you to write your test scripts
in whatever scripting language is appropriate for
your project. The Perl or Python scripting lan-
guages, forxample, could be used to create test
scripts that are portable to systems other than
UNIX systems.

Peter Miller

(blllib/en/user-guide/c11.2.s0)

UserGuide

This means that if you can write it in your script-
ing language of choice, you can test ithis
includes such things as client-semymodel inter
faces, and multi-user synchronization testing.

8.2.2.2. NdExecute Permission

Under aegis, scripilés do not hee exeute per
mission set, so tlyeshould alvays be ivoked by
passing the script file to the interpreterot
executing the test directly:

sh filename
perl filename

8.2.2.3. NoCommand-Line Arguments

Tests should not expect command linguanents.
Tests are not passed the name of the project nor
the number of the change.

8.2.2.4. ldentifyingthe Scripting Language

Even though aegis does noteeute the test script
directly, it is a good idea to put some indication of
its scripting language into the test scrifgtee the
sections bely for suggested "magic number"
identification of scripts in various languages.

8.2.2.5. Curment Directory

Tests are alays run with the current directory set
to either the deslopment directory of the change
under test when testing a change, or theghate
tion directory when intgrating a change, or the
baseline when performing independent tests.

A test must not makassumptions about where it

is being eecuted from, except to thetent that it

is somewhere auild has been performedi test
must not assume that the current directory is
writable, and must not try to write to it, as this
could damage the source code of a change under
development, potentially destroying weeks of
work.

8.2.2.6. Checlexit Status and Retum Values

A test script should check the exit status or return
value of every single command or function call,
evan those which cannotafl. Checkingthe «it
status or return value ofvery statement in the
script ensures that strange permission settings, or
disk space problems, will cause the testdi, f
rather than plky on and produce spurious results.
See the sections b&ldor specific suggestions on
checking exit status or return values iarigus
scripting languages.

Page 95

User Guide

8.2.2.7. Bmporary Directory

Tests should create a temporary subdirectory in
the operating systesitemporary directory (typi-
cally /tmp on UNIX systems) and then change its
working directory €d) to this directory This iso-
lates ag vandalism that the program under test
may indulge in, and seeg as a place to write
temporary files.

At the end of the test, it is didient to change
directory out of the temporary subdirectory and
then remge the entire temporary subdirectory
hierarcly, rather than track and rewm dl test
files which may or may not be created.

Some UNIX systems provide other temporary
directories, such awar/tmp which may preide

a better location for a temporary subdirectory for
testing (more file system spaceaidable, admin-
istrator preference, etc.)Test scripts wishing to
accomodate alternate temporary directories
should use the TMPDIR ®imonment variable (or
some other environment variable appropriate to
the operating system hosting the tests) as the loca-
tion for creating their temporary subdirectory
with /tmp as a reasonable default if TMPDIR is
not set.

8.2.2.8. Tap Interrupts

Test scripts should catch appropriate interrupts (1
2 3 and 15 onuNix systems) and cause the test to
fail. The interrupt handler should perform yan
cleanup the test requires, such as removing the
temporary subdirectory.

8.2.2.9. ARGER

If the program under testviokes pagers on its
output, a lamorg1) et al, it should be coded to
use the RGER environment ariable. Bsts of
such programs shouldvedys set RGER to cat
so that tests alays behae the same, irrespevé

of invocation method (either by aegis or from the
command line).

8.2.2.10. Auxxiliary Files

If a test requiresxéra files as input or output to a
command, it must construct them itself from in-
line data. (See the sections lveléor more spe-
cific information about he to use in-line data in
various scripting languages to create files.)

It is almost impossible to determine the location
of an auxiliary file, if that auxiliary file is part of
the project source.lt could be in either the
change under test or the baseline.

Page 96

(blllib/en/user-guide/c11.2.s0)

Aegis

8.2.2.11. Newlest Templates

Regardless of your choice of scripting language, it
is possible to specify most of the repetitious items
abore in afile templateused gery time a user
creates a e test. Sedhe aen{1l) command for
more information.

Having the machine do it for you means that you
are more likely to do it.

8.2.3. Boune Shell

The Bourne shell isvailable on all flavors of the
UNIX operating system, which allows Bourne
shell scripts to be written portably across those
systems. Herare some specific guidelines for
writing aegis tests using Bourne shell scripts.

8.2.3.1. MagicNumber

Some indication that the test is a Bourne shell
script is a good idea. While masystems accept
that a first line starting with a colon is a Bourne
shell "magic number", a more widely understood
"magic number" is

#! bin/sh

as the first line of the script file.

8.2.3.2. Checkexit Status

A Bourne shell test script should check thdt e
status of eery single command,ven those which
cannot &il. Donot rely on, or use, theet -eshell
option (it provides no ability to clean up on error).

Checking the ¥t status inolves testing the con-
tents of the$? shell variable. Donot use arif
statement wrapped around areaution of the
program under test as this will miss core dumps
and other terminations caused by signals.

8.2.3.3. Bmporary Directory

Bourne shell test scripts should create a tempo-
rary subdirectory irftmp (or the directory speci-
fied by the TMPDIR environment variable) and
thencd into this directory At the end of the test,

or on interrupt, the script shouled out of the
temporary subdirectory and them -rf it.

8.2.3.4. Tap Interrupts

Use thetrap statement to catch interrupts 1 2 3
and 15 and cause the testad.f Thisshould per
form ary cleanup the test requires, such as remo
ing the temporary directory.

Peter Miller

Aegis

8.2.3.5. Auxiliary Files

If a test requiresxéra files as input or output to a
command, it must construct them itself, using
heredocuments:

cat <<EOF >file
contents

of the

file

EOF

Seesh(1) for more information.

8.2.3.6. [test]

You should alvays use theéestcommand, rather
than the square bracket form, as snaystems do
not have the square braek form, if you publish
to USENET or for FTP.

8.2.3.7. OtherBourne Shell Portability Issues

The abwe list covers the most common Bourne
shell issues that are regdmt to most agis tests.
The documentation for the GNU autoconf utility
however, contains a more xhaustve list of
Bourne shell portability issues. If you want (or
need) to mad your tests as portable as possible,
see the documentation for GNU autoconf.

8.2.4. Rl

Perl is a popular open-source scripting language
available on a number of operating systeriiere

are some spedif guidelines for writing aegis tests
using Perl scripts.

8.2.4.1. MagicNumber

Some indication that the test is a Perl script is a
good idea. Because Perl is not installed in the
same location on alUNIXx systems, aiffst-line
"magic number" such as:

#! Jusr/local/bin/perl

that hard-codes the Perl path name will not be
portable if you publish your tests.

If the eny(1) program is ailable, a more portable
"magic number" for Perl is:

#! Jusr/bin/env perl

8.2.4.2. CheckReturn Values

A Perl test script should check the returalue
from every subroutine, een those which cannot
fail.

A Perl test script should also check thét status
of every command it gecutes. Checkinghe «it

Peter Miller

(blllib/en/user-guide/c11.2.s0)

UserGuide

status inolves testing the contents of t#i@ vari-
able. Sedhe Perl documentation on "Preied
Variables" for details.

8.2.4.3. Bmporary Directory

Perl test scripts should create a temporary subdi-
rectory in/tmp (or the directory specified by the
$ENV{TMPDIR} ervironment variable) and
then chdir into this directory At the end of the
test, or on interrupt, the script showladir out of
the temporary subdirectory and then remat
and its hierarch A portable way to do this
within a Perl script:

use File::Find;

finddepth(sub { if (-d $_) {

rmdir($_)
} else{

unlink($))
P
$dir);

8.2.4.4. Tap Interrupts

Use Perk $SIGhash to catch interrupts for HUP
INT, QUIT and TERM and cause the test #il.f
This should perform ancleanup the test requires,
such as remaong the temporary directornyA very
simple example:

$SIG{HUP} =

$SIG{INT} =

$SIG{QUIT} =

$SIG{TERM} =

sub { &cleanup; exit(2) };

8.2.4.5. Auxiliary Files

If a test requiresxéra files as input or output to a
command, it must construct them itself, using in-
line data such akere documents See the Perl
documentation for more information.

8.2.4.6. ExitValues

Aegis expects tests to exit with a status of O for
success, 1 for failure, and 2 for no result. The fol-
lowing code fragment will map allafied (non-
zero) it values to an exit status of 1 geedless

of what Perl module called exit:

END{$?=1if$?}

A more complete example could check conditions
and set the »aét status to 2 to indicate NO
RESULT.

Page 97

User Guide

8.2.4.7. Modules

Perl supports the ability to re-use modules of
common routines, and to searctvesal directo-

ries for modules. This makes it a@nient to
write modules to share code among the tests in a
project.

Any modules that are used by your test scripts
(other than the standard modules included by
Perl) should be checked in to the project as source
files. Test scripts should then import the mod-

ule(s) via the normal Perl mechanism:

use MyTest;

When a test is run, the module file may actually
be in the baseline directorgot the deelopment
or integration directoriesTo make aure that the
test irvocation fnds the module, théest com-
mand field in the projectaegis.conffile should
use the Pertl option to search first the local
directory and then the baseline:
test_ command =
"perl -1. -I${BaseLine} \
${File_Name}"

or, dternatvely, if you had created your Perl test
modules in a subdirectory namadx:
test_ command =

"perl -1./aux -1${BaseLine}/aux \
${File_Name}"

For details on the carentions irvolved in writing
your avn modules, consult the Perl documenta-
tion or other reference work.

Actually, you need to use the ${sehr path} sub-
stitution. I'll have to fix this one day.

8.2.4.8. TheTest::Cmd Module

A Test::Cmd module isvailable on CPAN (the
Comprehense Rerl Archive Network) that maks

it easy to write Perl scripts that conform t@iae
test requirements. The Test::Cmd module sup-
ports most of the guidelines mentioned \aho
including creating a temporary subdirectory
cleaning up the temporary subdirectory on exit or
interrupt, writing auxiliary ifes from in-line con-
tents, and provides methods for exiting on suc-
cess, dilure, or no result. The followingckample
illustrates some of its capabilities:

Page 98

(blllib/en/user-guide/c11.2.s0)

Aegis

#! Jusr/bin/env perl
use Test::Cmd;
$test = Test::Cmd->new(prog
=> 'program_under_test’,
workdir =>");
$ret = $test->write(aux_file’, <<EOF);
contents of file
EOF
$test->no_result(! $ret =>
sub { print STDERR
"Couldn’t write file: $\\n"});
$test->run(args => "aux_file’);
$test->fail($? != 0);
$test->pass;

The various methods supplied by thest::Cmd
module hae a umber of options to control their
behavior.

The Test::Cmd module manipulates file and path
names using the operating-system-independent
File::Spec module, so the Test::Cmd module can
be used to write tests that are portable tg an
operating system that runs Perl and the program
under test.

The Test::Cmd module isvailable on CRN.
See the moduls’documentation for details.

8.2.4.9. TheTest and Test::Harness Modules

Perl supplies te modules, st and &st::Har-
ness, to support itswm testing infrastructure.
Perl's tests use different cuoentions than agis
tests; speci€ally, Perl tests do not use thie
status to indicate the success or failure of the test,
like eeds expects. TheTest::Harness module
expects that Perl tests report the successaituré

of individual sub-tests on standard output, and
always exit with a status of 0 to indicate the script
tested gerything it was supposed to.

This difference makes itwkward to use the et
and Test::Harness modules forgee tests. In
some circumstances, though, you may be forced
to write tests using the Test an@st:Harness
modules--for gample, if you use aegis todop

a Rerl module for distribtion--but still wish to
have te tests conform to aegis e@ntions dur

ing development.

This can be done by writing each test to use an
ervironment \ariable to control whether itsxi¢
status should conform to gis or Perl coven-
tions. Thisis easy when using thee3t module to
write tests, as itsonfail method provides an
appropriate place to set theitestatus to non-zero

if the appropriate environment variable is set.
The following code fragment at or near thegbe
ning of each Perl test script accomplishes this:

Peter Miller

Aegis

use Test;
BEGIN { plan tests => 3,
onfail => sub {
$? = 1 if SENV{AEGIS_TEST}
}
}

(See the documentation for thest module for
information about using it to write tests.)

There then needs to be a wrapper Perl script
around the xecution of the tests to set theven
ronment variable. Thefollowing script (called
mytest.pl for the sak of example) sets the
AEGIS_TEST ernvironment \ariable expected by
the previous code fragment:

use Test::Harness;
$ENV{AEGIS_TEST} = 1;
open STDOUT, ">/dev/null" || exit (2);
runtests(@ARGV);
END {$? = 1if $2;
print STDERR $?
? " FAILED" : "PASSED",
“\n"; }
It also makes its output more nearly conform to
agjis’ examples by redirecting standard output to
/dev/null and restricting its reporting of results to
a dmple FAILED or PASSED on standard error
output.

The last piece of the puzzle is to modify the
test commandield of the projectegis.conffile
to have hemytest.pkcript call the test script:

test_ command =
"perl -1. -I${BaseLine} mytest.pl \
${File_Name}"

The Test and Test::Harness modules are part of
the standard Perl distribution and do not need to
be downloaded from swhere. Becaus¢hese
modules are part of the standard disttidn, they

can be used by test scripts without being chdck
in to the project.

8.2.4.10. Granularity By Steven
<knight@baldmt.com>

The granularity of Perl and Aegis tests meshyv
well at the individual test file (.t) lel. Aegis and
Test::Harness are simply different harnesses that
expect slightly different corentions from the
tests thg execute: Agjis uses the exit code to
communicate an aggyae pass/fail/no result sta-
tus, Test::Harness examines the output from tests
to decide if a failure occurred.

Knight

It's actually pretty easy to accomodate both con-
ventions. You can do this as easily as setting the
test command variable in the project

Peter Miller

(bl/lib/en/user-guide/c9.0.s0)

UserGuide

configuration file to something I the following:

test_command =
"perl -MTest::Harness -e 'runtests(\"$fn\"); \
END {$$? = 1 if $$? }™;

In reality, you'll likely need to add ariable
expansions to generate -1 or other Perl options for
the full Aegis search pathThe END block taks
care of mapping annon-zero Test::Harnesxie
code to the '1’ that Aegis expects to indicate a
failure.

The only thing you really lose here is the
Test::Harness agggetion of results and timing at

the end of a multi-test run. This is more thafi of
set by having Agis track which tests need to be
run for a gven change.

Alternatively, you can gecute the .t files directly
not through €st::Harness::runtests. Thsseasily
accomodated using the onfail method from the
standard Perl Test module in each tdseres a
standard opening block for .t tests

use Test;
BEGIN { $| = 1; plan tests => 19,
onfail => sub { $? = 1 if SENV{AEGIS_TEST}}

}
END {print "not ok 1\n" unless $loaded;}

use Test::Cmd;
$loaded = 1,
ok(1);

That's it (modulo specifying the appropriate num-
ber of tests). My .t tests mouse the propenrxt
status to report a failure back togie Theonly
other piece is corguring the projecs "test_com-
mand" \alue to set the AEGIS_TEST \éron-
ment variable.

You can also use an intermediate script that also
redirects the tests'STDOUT to /dev/null, if you
are used to and kkthe coarser FSSED/FAILED
status.

8.2.5. BatchTesting

The usual test commaridfield of the project
aegis.confiile runs a single test at a timg/hen
you have a multi-CPU machine, or are able to dis-
tribute the testing load across a range of
machines, it is often desirable to do s®he
“batch_test commanadf the project confura-
tion file is for this purpose.Seeaepconf5) for
more information.

Page 99

User Guide

9. Branching

This chapter describes the concept of branching

implemented by Agis. Theprocess described in
previous chapters makes changes to a prgect’
master source.

1 2 3

Baseline

Branching generalizes this change model, by
allowing the baseline to be treated as a change, or

the ability to treat a change as a baseline.

1.1 1.2
Branch 1

Trunk Baseline

Aegis

By default, these tw levd of project branching
are created automatically when toenpi(1) com-
mand is used.You need to use theVERSion

option to mak this deeper or shalieer, or have
different numbering.

Command BrancheSreated

aenpr foo foo, foo.1,
foo.1.0

aenpr foo -ers | foo, foo.2,

24.1 foo.2.4, foo.2.4.1

aenpr foo.7 foo, foo.7

agyis -npr foo | foo

-vers -

The last is a special case, to enable a project to be

Since branchs are sometimes considered as a created with no default branchesgilso hard to

changes it is useful to expand on thded#nces.
A branch, or trunk, baseline may Jeadildren
which are eitherchanges or deeperbranches.
From this perspeate the difference is that noth-
ing may be modified directly in a branch. A

branch is an integrated baseline with all the asso-

ciated protection. @ modify a branch one must
open a change under that branch.

Looking upward from a change under a branch,
its parentis the branch baseline, and gisindoar-
ent is theparentof the branch. \& will see this
used later when we talk about ending a branch.

A significant feature of Agis branches is that,
because theare an &tension of thechangecon-
cept, thg are expected to end, and be grigted
back intotheir baseline, oparent,in time.

The most common case of this is in project
releases.

A branch in thebeing deelopedstate may hze
changes made to it, and/or deeper branchiéss
may recurse to gnlevd. Oncea lranch is com-

get the empty string past the alias).

To ad branching and releasevée management
to an «isting project on uses theenbi(1) com-
mand at ap levd. Say we already hee
f00.1.0 , which representsersion 1.0 of our
software. One method of releasevde manage-
ment would be to intgratefoo.1.0into its parent
foo.1 and then doaenbr -p foo.lwould create
foo.1.1representing version 1.1Eventually we
might want to ma& a najor version release and
would integratefoo.linto its parent fooand then
do aenbr -p foowhich would creatdoo.2 Then
if we do aenbr -p foo.2we createfoo.2.Q for
development of version 2.0 of our software.

9.2. Transition Using aenrls

To convert a project from the old-style to thewe
branching style, use treenri{1) command.

If you give ro sacond project name, thew@ame
is generated by reming the numeric sfifxes. If

plete, no further deeper branches may be created You did not gie a VERSion option, the numeric

from that branch.

9.1. How To Use Branching

To access a project branch, the project name has
the branch appended, separated by a dot or a

hyphen. er example: branch 1 of project Gs"
is referred to as "@gs.1". To reference changes

on this branch, use this compound project name

wherever you would normally use a project name.

Traditional 2-leel project release names are
obtained by using a furthervi@ of branching.
For example: by creating branch 0 of project
"aggis.1", there wuld be a branch accessed as
project "aegis.1.0".

Page 100

(bl/lib/en/user-guide/c9.0.s0)

sufixes will be used to determine the nextrv
sion, by adding one to the previous minersion
number The nev project is then created rather
like theaenp(1) command.

The files of the old project are copied across as an
implicit change on the mdy created branch
within the nev project. If the nev project name
already exists, and is a new-style project,abp-
rls(1) command will attempt to makihe appro-
priate numbered branchedf the nev project
already eists and is an old-style project, or it
exists and the branch number(s) are already in
use, aenrlg1) will emit an error anddil. The
aenrl{1) command only works on old-style
projects, and alays comwerts them to ne style

Peter Miller

Aegis

projects.

Planning you branch numbers is essentifiou
want to use 3-leel branch numbers (e.g.
"aggis.2.3.1") at some time in the future, then you
must use 3-Mel version numbers all the ay
through (e.g. "a@s.2.3.0"). Thisis because
change numbers and branch numbers come from
the same common pool of numbers. Once change
one has been used (e.g. gse2.3.C001"), then
branch one is no longer valable (e.g.
"aegis.2.3.1.C042" conflicts).

9.3. Cross Branch Merge

From time to time you will &nt to merge the
changes from one branch into a changeis
may be done using a cross-branchgeerThisis
done by specifying the-BRanch option to the
aegis -dif -mege-only command.

The most common cross branch merge is when
the projects files are out-of-date. Because it is
not possible to usaggis -dif -mege-only directly

on the branch, this must be in a change on the
branch. Asa dhort-cut, the branch may be speci-
fied using the-grandparentoption.

9.4. Multiple Branch Development

It is very common for a bug fix to need to be
applied to more than one branch at ondée
change could be applied to the common ancestor
branch, haever this may not be &ctive in the
branch immediately An dternative is 1o use the
aggis -clone command, which can be used to
identically reproduce a change on another branch.

9.5. Hierarchy of Projects

It would be nice if there was some way to use one
project as a sort of "super change" to a "super
project’, so that lare teams (say 1000 people)
could work as lots of small teams (say 100 peo-
ple). Asa gmall team gets their chunk ready
using the facilities provided to-date by dig, the
small teans baseline is treated as a change to be
made to the large team baseline.

This idea can be extended quite naturally tg an
depth of layering.

After readingTransaction Oriented Coigfuration

Management: A Case StudReter Fieler Grace

Downey, CMU/SEI-90-TR-23, this is not a ne
idea. Italso provides some ideas forvihdo do

branching sensiblyand was influential in the
design of Aegis’ branching.

Peter Miller

(bl/lib/en/user-guide/c9.1.s0)

UserGuide

9.5.1. Fundamentals

Aegis has eerything you need to e a siper
project and a number of sub-projects. All you
need to do is create an &etiranch for each sub-
project. Eactbranch gets a separate baseliiz,

% aenpr gizmo.0.1

project "gizmo": created
project "gizmo.0": created
project "gizmo.0.1": created
%

Now, for each of your desired sub-projects, create
another branch
aenbr -p gizmo.0.1 1 #

aenbr -p gizmo.0.1 2 #
aenbr -p gizmo.0.1 3 #

for the foo project
for the bar project
for the baz project

Now, the guys on thefoo project set their
AEGIS_PROJECT environment variable to to
gizmo.0.1.1 the bar guys usegizmo.0.1.2 and
bazusesgizmo.0.1.3 From the deeloper’s point
of view they are separate projects:rom one leel
up, though, theare just part of a bigger project.

It helps if you design and implement thaild
system ifrst. You do this as a change set on the
common parent branch. Once it is completed
each branch can inherit it from the common- par
ent. Thismakes integration easiewhen it comes
time to integrate the sub-projects together.

9.5.2. Incremental Integration

It is very common that not all of the sub-projects
will be ready to be integrated at the same time.
This is the normal situation with A& branching,
and is handled cleanly and simply.

In Aegis each branch is literally a change, all the
way down into the internal data structuredust as
each change gets its ownvdepment directory
each branch gets its own baseline. Just asa-de
opment directory inheritsverything its doest’
have from the baseline, so branches inherérg-
thing theydon't havefrom their parent branch (or
ultimately from the trunk). Just as you incremen-
tally integrate changes into a branch, you incre-
mentally integrate branches into their parent.

The branches only influence each other whep the
are intgrated, just as changes only influence each
other when thgare integrated.

There are times when a branch beinggraged

into its parent is found to be inadequatkegis
provides a simple mechanism to “bounce” a
branch intgration. Recall that, for Adis,
branches are the same as changes. Just as you

Page 101

User Guide

“develop end” a change (seaed€l) for more
information) you als@edea tranch when desl-
opment on it is completed.

Once a branch has wi#op-end (stops being an
activebranch), it is reiewed as a normal change,
and integrated as a normal chandfeintegration
failed, it returns to “being deloped” and
becomes an aw®t lranch once agn, until the
nextaede As you can see, it is as easy to bounce
a kranch intgration as it is to bounce a change
integration.

An unsuccessful branch integration vea the
repository unchanged, just as an unsuccessful
change integration lges it unchanged.

9.5.3. SupetProject Branching

In mary real-world situations it is very important
to be able to branch atyapoint in the past his-
tory of the super-project to fix (integration spe-
cific) bugs or to customize more the older states
of the super-project.

You can create a branch atyatime, on ay active
branch or actie tranch ancestorYou can popu-
late that branch with historicakwsions (from ay
other branch, actuallyot just the ancestral line).
The method is a little fussy — you caaecpinto

a branch directlyyou need to do this via a change
to that branch.Files not changed by a change on
a lranch are inherited from the currené(actve)
state of the parent branctBee the section on
Insulation above.

9.5.4. SupetProject Testing

Many folks see Aegis’ testing features as useful
for unit testing individual ifes or change sets.
For large projects, it is common that a spiecif
test tool will be written. However, even large
scale integration testing is possible using Aegis.

You can change the test command from being a
shell script to being anything to you want - see the
test_ commanéeld inaepcon). Orrun the test
tool from the shell script. If the ingeation tests
can be automated, it makes sense to preserv
them in the repository — thiere some of the most
vauable regression tests forwopers, because
they describe correct behavior outside the “box”
the deeloper usually works in.

9.5.5. TheNext Cycle

Once you hee a ftilly-integrated product, what
happens on the nexyde? Well, first you may
want to finish gizmo.0.1and integrate it into

Page 102

(bl/lib/en/user-guide/c9.2.s0)

Aegis

gizmo.Q and thenaenbr -p gizmo.0 2

Then what? Same deal as before, buttlEng

not changed in one of the sub-project branches

gets inherited from the ancestor.
aenbr -p gizmo.0.2 1 #

aenbr -p gizmo.0.2 2 #
aenbr -p gizmo.0.2 3 #

for the foo project
for the bar project
for the baz project

Most folks find doing the whole nge-project-
build every time tiresome — so don’ Temporar-

ily (via a change set) hack thaild coniguration

to build only the bit you want — obviously a dif-
ferent hack on each sub-projectranch. Just
remember to un-hack it (via another change set)
before you integrate the sub-project.

9.5.6. BugFixing

The aeclon€l) command lets you clone a change
set from one branch to anotheSo if you hare a
bug fix that needs to be done on each vecti
branch you can clone it (once youvhait fixed

the first time). You gill have o build review and
integraten times (branches often &f non-tri-
ially). Providing it isn't aready in use, you can
even ask for the same change number on each
branch — handy for syncing with amternal lug
tracking system.

Alternatively, fix bugs in the common ancestor
and the sub-projects will inherit the fix thexhe
time the integrate something on their branch
(assuming thearen't insulated against it).

9.6. Conflict Resolution

A devdopment directory becomes out of date,
compared to the project, when another change is
integrated which has a file in common. This situ-
ation is detected automatically aed€1) and
you resole it using aed1), usually with some-
thing like the --mege-only option. Additionally

you can see if you lva an out-of-date file from

the change fles listing, because it will she you

the current baselineevsion in parentheses if you
are out-of-date.

Aegis implements branches asry long changes,
with sub-changesA side effect of this is that a
branch can become out-of-date in the sanag w
that a deelopment director becomes out of date.
When it comes time taed€l) the branch, you
will be told if there are an out-of-date fies.
Additionally, the project fles listing will shav out

of date files in exactly the same way that the
change file listing does.

Peter Miller

Aegis

9.6.1. Cioss Branch Merge

However, unlike a smple change, if you attempt
to use theaed --megeonly command in the
branch baseline, you will get an error message!
How, then, do you resobsthe apparent impasse?

The aed1) command has a number of options
designed for just this purpose.

» The --branch option may be used to specify
another branch of the same project, as a source
of the file to be differenced amst. Thisis
almost what you need.

» The --grandparentoption is a special case of
the --branch option, and it means the parent
branch of project.

» The--trunk option is also a special case of the
--branch option, and it means the base branch
from which the entire branch tree springs.

By creating a n& change on the out-of-date
branch, and copng in the out-of-date files, you
have dmost eerything required.All that is nec-
essary is to perform a cross-branch geeaginst

the project grandparent, and the necessarg-mer
ing will be performed. In addition Aegis will
remember that it was a cross-branch merge, and
once aeipasscompletes successfullthe branch
will be up-to-date once more.

o Create a ng& change on the out-of-date

branch

Use a simpleaecpcommand to copthe out-
of-date fles. (Do not use ag --branch or
--deltaoptions.)

Use the &ed --megeonly --gmandparent
command to perform the merge.

At this point, if you use thedel cf com-

mand, you will notice that thiglé is tagged in
the listing with the n& branch edit origin, to
be used duringeipass If it isnt, you hae

made a mistake.

As usual, use yourafaurite editor to check
the merge results, and resalny conflicts.

Build and test as usual.
Complete the change as usual.

Onceaeipasss successful, the branch will be
up-to-date (for the files in the change).

9.6.2. Insulation

One of the stated benefits of using a branch is the
insulating effects which branches can vide.
However, when you hae nultiple simultaneous
actve lranches, that insulation will imgably

Peter Miller

(bl/lib/en/user-guide/c9.3.s0)

UserGuide

lead to out-of-date branciiés. Nav thathowto
merge them has been describadhenshould you
merge?

In a simple changs’devdopment directorythere
are times when aaeipasswill result in all devel-
opers needing to recompildepending on what
files you are working on, it may be that you need
to merge some of your changke$ immediately

or aecp an earlier version of the files which
changed in the project.

Branches can also def from exactly the same
problems, and are mended byaetly the same
alternatves.

9.6.2.1. Branchinsulated Against Project

If you created a branch to insulate therkvbeing
done on the branch from other activities in the
project, it follows that when such build problems
occurred, you wuld use an decp -delta” com-
mand to continue insulating.

This action defers the labour of merging until
towards the end of the branchwépment, some-
times with a quite visible schedule impact.

9.6.2.2. Poject Insulated Against Branch

If you created a branch to insulate the project
from work being done in the branch, it foks
that you would do a cross branch immediately.

This action amortizes the labour of miag
across the life of the branch, often with a number
of small delays and less schedule impact.

9.6.2.3. Mix'n’ Match

Of course, we usually ke oth these motes,
and some more besides, so the answer is usually
“it depends”.

9.7. EndingA Branch

“OK, I give wp. I do not understand the ending of
branches.”

Usually you end deelopment of a branch the
same way you end deopment of a simple
change. Inthis example, branclexample.1.42
will be ended:

% aede -p example 1 -c 42

aegis: project "example.1": change
42: file " fubar' in t he baseline
has changed since the last 'aegis
-DIFFerence’ command, you need to
do a merge

%

Oops. Somethingzent wrong. Dort panic!

Page 103

User Guide

I’'m going to assume, for the purposes of explana-
tion, that there ha been changes in one of the
ancestor branches, and thus require a merge, just
like file fubar, above.

You need to bring filfubar up-to-date. Ha?
You do it in a dhange set, li& everything else.

At his point you need to do 5 things: (1) create a
new change on example.1.42, (2) cdpiparinto

it, (3) mergefubar with branch "example.1" (4)
end deelopment of the change and integrate it,
and (5) nav you can end example.1.42

The -GrandParent option is a special case of the
-BRanch option.You are actually doing a cross-
branch merge, just up-and-down rather than side-

ways.

% aem -gp fubar
%

And manually fix ag conflicts... naturally.

At this point, hae a bok at the file listing, it will
shav you something you va reve seen before -
it will show you what it isgoing toset the
branchs alit_number_origin to for each file, at
aeipass

% ael cf
Type Action Edit File Name
source modify 1.3 fubar

{cross 1.2}

Now finish the change as usualaeb, aed, aede,
aerpass, aeib, ..., aeipassthing special here.

One small tip: merge the files one at a time. It
makes keeping track of where you are up to much
easier.

Now you can end delopment of the branch,
because all of the files are up-to-date.

In some cases, Aegis has detected a logical con-
flict where you, the human, knathere is none.
Remember that theemcommand sées the old
version of the file with gB sufiix (‘B’ for

backup). Ifyou hare a fle like this, just use

% mv fubar,B fubar
%

to discard eerything from the ancestor branch,
and use the current branch.

Page 104 (bl/lib/en/user-guide/c6.0.50)

Aegis

Peter Miller

Aegis

10. Tips and Traps

This chapter contains hints forvado use the
aegis program morefetiently and documents a
number of pitfalls you may encounter.

This chapter is at present very "ad hoc" with no
particular ordering.Fortunately it is, as yet,
rather small. The final size of this chapter is
expected to be quite large.

10.1. Renamindgnclude Files

Renaming include files can be a disasti¢her
finding all of the clients, or making sure the new
copy is used rather than the old gogill in the
baseline.

Aegis provides some assistance. When the
aemy1l) command is used, a file in thevdieop-
ment directory is created in tloéd location, filled
with garbage. Compilewill fail very diagnosti-
cally, and you can change the reference in the
source file, probably afterec{1)ing it first.

If you are moving an include file from one direc-
tory to anotherbut leaving the basename
unchanged, create a [floetween the ve and

old names, but only in the @@opment directory
(i.e. replacing the "garbage" file aegis created for
you). Createhe link afteraemy1) has suc-
ceeded. Thimsulates you from a number of
nasty Catch-22 situations in writing the depen-
deny maintenance todd' rules file.

10.2. SymbolicLinks

If you are on a flaor of uNix which has symbolic
links, it is often useful to create a symbolic link
from the deelopment directory to the baseline.
This can mak browsing the baseline very simple.

Assuming that the project and change defaults are
appropriate, the following command

In -s ‘aegis -cd -bl* bl
is all that is required to create a symbolic link

calledbl pointing to the baseline. Note that the
aecdalias is inappropriate in this case.

This can be done automatically fareey change,
by placing the line

develop_begin_command =
"In -s $baseline bl";

into the project configuration file.

20 A hard link uses ferer disk blocks. Symbolic
links survive the subject file being deleted and
recreated.

Peter Miller

(bl/lib/en/user-guide/c6.0.s0)

UserGuide

10.3. UserSetup

There are a number of things which users of aegis
can do to mad it more useful, or more user
friendly. This section describes just afef

them.

10.3.1. Thecshrc or .profile files

The aliases for the various user commands used
throughout this manual are obtained by appending
a line of the form

. | usrt/local/share/aegis/profile

to the.profile file in the uses home directoryif
they use thesh(1) shell or thébash1) shell.

If the user uses thesH(1) shell, append a line of
the form

source /usr/local/share/aegis/cshrc

to the.cshrcfile in the uses home directory.

These days, mgrsystems also provide an
letc/profile.ddirectory which has symbolic links

to the start-up scripts for various packages. These
are run automatically for all users. If your system
has such a thing, arrange for symbolic links

In -s /usr/local/share/aegis/profile \
letc/profile.d/aegis.sh

In -s /usr/local/share/aegis/cshrc \
/etc/profile.d/aegis.csh

and you will not need to edivery user’s.cshrc
or .profilefile.

10.3.2. TheAEGIS_PATH environment vari-
able

If users wish to use aegis for their own projects, in
addition to the "system" projects, the
AEGIS_RATH environment variable forms a colon
separated search path of aegis "library" directo-
ries. Thelusr/local/lib/aegidirectory is alvays
implicitly added to this list.

The user should not create this library directory,
but let aegis do this for itself (otherwise you will
get an error message).

The AEGIS_RATH environment variable should
be set in thecshrcor .profile files in the user’s
home directory Typical setting is

setenv AEGIS_PATH “/lib/aegis

and this is the default used in the
lusr/local/share/aegis/cshfde.

Page 105

User Guide

10.3.3. Theaegisc file

The .aegisrcfile in the uses home directory con-
tains a number of usefukfds. Seaeucon(b)
for more information.

10.3.4. Thedefaulting mechanism

In order for you to specify the minimum possible
information on the command line, aegis has been
designed to work most of it out itself.

The default project is the project which you are
working on changes foif there is only one, oth-
erwise it is gleaned from thaegisrcfile. The
command line werrides ay default.

The default change is the one you are working on
within the (default or specified) project, if there is
only one. The command lineverides any

default.

10.4. TheProject Owner

For the greatest protection from accidental
change, it is best if the project is owned hynax
account which is none of the dtaf his account

is often named the same as the project, or some-
times there is a single umbrella account for all
projects.

When an aegis project is created, the owner is the
user creating the project, and the group is the
users default group. The creating user is

installed as the projestfirst administrator.

A new project administrator should be created -
an actual user account. Tamix password

should then be disabled on the project account - it
will never be recessary to use it agéih.

The user nominated as project administrator many
then assign all of the other dtadles. Aqis takes
care of ensuring that the baseline is owned by the
project account, not grof the other staff, while
development directories alays belong to the
developer (but the group will alays be the

project group, irrespeet d the deeloper’s

default group).

All of the staf working on a project should be
members of the projestgoup, to be able to

browse the baseline, for reviewers to be able to
review changes. Thisise ofuNIX groups means

that projects may be as secure or open as desired.

2l Unless bugs in ags corrupt the database, in
which case repairs can be accomplished as the
project account using a text editor.

Page 106

(bl/lib/en/user-guide/c6.0.s0)

Aegis

10.5. USENETPublication Standards

If you are writing software to publish on
USENET, a rumber of the source newsgroups
have publication standards. This section
describes ways of generating the following files,
required by mayof the newsgroups’ moderators:

MANIFEST List of files in the distribu-
tion.

Haow to build the distribu-
tion.

What happened for this
distribution.

An identification of this

distribution.

Makefile
CHANGES

patchleel.h

Each of these files may be generated from infor-
mation known to aegis, with the aid of some fairly
simple shell scripts.

10.5.1. CHANGES
Write this section.

Look in theaux/CHANGES.sfile included in the
aegis distribution for an example of one way to do
this.

10.5.2. MANIFEST
Write this section.

Look in theaux/MANIFEST.slandaux/MANI-
FEST.awKiles included in the aegis distribution
for an example of one way to do this.

10.5.3. Malefile
Write this section.

Look in theaux/Makefile.standaux/Makefile.awk
files included in the aegis distribution for an
example of one way to do this.

10.5.4. patchleel.h
Write this section.

Look in theaux/Howto.coofile included in the
aegis distribution for an example of one way to do
this.

10.5.5. BuildingPatch Files

Thepatchprogram by Larry Wall is one of the
enduring marvels of USENETThis section
describes hwe to build input files for this miracle
program.

Write this section.

Look in theaux/patches.sfile included in the
aegis distribution for an example of one way to do

Peter Miller

Aegis UserGuide

this.

Peter Miller (bl/lib/en/user-guide/c6.1.s0) Page 107

User Guide

10.6. Hetepgeneous Deslopment

The aegis program has support for heterogeneous
development. ltwill enforce that each change be
built and tested on each of a list of architectures.

It determines which architecture it is currently
executing on by using thenamé2) system call.

Theunamg?) system call can yield unen

results, depending on the operating systems ven-
dor’s interpretation of what it should retéfn To
cope with this, each required architecture for a
project is specified as a name and a pattern.

The name is used by aegis internadhd is also
available in theB{ARCHitecture}substitution (see
aesulgs) for more information).

The patterns are simple shell file name patterns
(seesh(1) for more information) matched against
the output of theinamég?2) system call.

The result oinamg2) has four fields of interest:

sysnamgrelease versionandmachine These are

stitched together with hyphens to form an archi-
tecturevariantto be matched by the pattern.

For example, a system the author commonly uses
is "Sun0S-4.1.3-8-sun4m" which matches the
"SunOS-4.1*-*-sun4*" patternA solaris system,

a ery different beast, matches the
"SunOS-5.*-*-sun4*" pattern. Sus’'36 version

of Solaris matches the "SunOS-5.*-*-i86pc" pat-
tern. Acorvex g/stem matches the "Con-
vexOS-*-10.*-corvex' pattern.

10.6.1. Ppjectaegis.confile

To require a project to build and test on each of
these architectures, tlechitecturefield of the
projectaegis.confile is set. Seaepcon(b) for
more details on thislé. Theabore examples of
architectures could be represented as

architecture =

[
{

name = "sun4";
pattern = "SunOS-4.1*-*-sun4*";

name = "sun5";
pattern = "SunOS-5.*-*-sun4*",

22For example, SCO 3.2 returns the nodename
in the sysname field, when it should place "SCO"
there; Comex and Pyramid scramble itven worse.

Page 108

(bl/lib/en/user-guide/c6.1.s0)

Aegis

name = "sun5pc";
pattern = "SunOS-5.*-*-i86pc";

name = "convex";
pattern = "ConvexOS-*-10.*-*",

I

This would require that all changes build and test
on each of the "sun4", "sun5", "sun5pc" and "con-
vex' architectures.

It is also possible to ke optionalarchitectures.
This may be used to recognise an environment,
but not mandate that it be builvery time.

{
name = "solaris-8-sparc";
pattern = "SunOS-5.8*-*-sun4*",
mode = optional;

2

However, once an architecture name appears in a
changes achitecture list, it is mandatory for that
change.

If the architecturefield does not appear in the
projectaegis.confile, it defaults to

architecture =

[
{
name = "unspecified";
pattern = "**;
}
I;

Setting the architectures is usually done as part of
the first change of a project, but it also may be
done to existing projects. This information is

kept in the projechegis.confile, rather than as a
project attribute, because it requires that the DMT
configuration file and the testsy®amrrespond-

ing details (see below).

Thelib/config.example/athitecturefile in
the Aegis distribution contains maarchitecture
variations, so that you may readily insert them
into your project configuration file.

10.6.2. Changéeittribute

Thearchitectureattribute is inherited by each new
change. Aproject administrator may subse-
guently edit the change attributes to gramngp-
tions for specific architectures. Saecq1) for

how to do his.

A build must be successfully performed on each
of the target architectures. Similartiie tests

must be performed successfully on each. These
requirements are because there is often

Peter Miller

Aegis

conditional code present to cope with the vagaries
of each architecture, and this needs to be com-
piled and tested in each case.

This multiple build and test requirement includes
both deelopment and integration states of each
change.

10.6.3. Network Files

This method of heterogeneousrdepment
assumes that the baseline andettgoment direc-
tories are wailable as the same pathname in all
target architecturesWith software such as NFS,
this does not present a great problem, vawe
NFS locking must also work.

There is also an assumption that all the hosts
remotely mounting NFS file systems will agree
on the time, because aegis uses time stamps to
record that various tasksveleen performed.
Software such asmed8) is require®.

10.6.4. DMT Implications

This method of heterogeneousrdepment
assumes that the baseline wilba opy of all
object files for all target architecturssnultane-
ously.

This means that the configuration file for the
DMT will need to distinguish all the variations of
the object files in some waylhe easiest method
is to hare a gparate object tree for each architec-
ture?®. To facilitate this, there is &B{ARCHitec-
ture} substitution gailable, which may then be
passed to the DMT using theild_command

field of the projectegis.confile.

The architecture name used by aegis needs to be
used by the DM[Tso hat both aegis and the DMT
can agree on which architecture is currently tar-
geted.

10.6.4.1. Cookexample

As and example of loto do this, the cook
recipes from the DMT chapter are modified as
appropriate. Firsthebuild_commandield of the
projectaegis.confile is changed to include the
${ARCHitecture)substitution:

2 Some sites manage by runnirdate(8) from
cron(8) every 15 minutes.

24 A tree the same shape as the source treesnak
navigation easierand users need not think oifef
names unique across all directories.

Peter Miller

(bl/lib/en/user-guide/c6.1.s0)

UserGuide

build_command =
"cook -b ${s Howto.cook} \
project=$p change=$c \
version=$v arch="$arch’ -nl";

Second, the C recipe must be changed to include
the architecture in the path of the result:

[arch]/%.0: %.c: [collect c_incl
-eia [prepost "-I" ™"
[search_list]] [resolve %.c]]

if [not [exists [arch]]] then
mkdir [arch]

set clearstat;

if [exists [target]] then
rm [target]

set clearstat;

[cc] [cc_flags] [prepost "-I"
" [search_list]] -c
[resolve %.c];

mv %.0 [target];

}

Third, the link recipe must be changed to include
the architecture in the name of the result:

[arch])/example: [object_files]
{
if [not [exists [arch]]] then
mkdir [arch]
set clearstat;
if [exists [target]] then
rm [target]
set clearstat;
[cc] -o [target] [resolve
[object_files]] -ly -II;
}

The method used to determine the
object_files variable is the same as before,
but the object file names moinclude the architec-
ture:
object_files =
[fromto %.y [arch]/%.0
[match_mask %.y [source_files]]]
[fromto %.I [arch]/%.0
[match_mask %.I [source_files]]]
[fromto %.c [arch]/%.0
[match_mask %.c [source_files]]]

Note that the form of these recipes precludes per-
forming a build in each target architecture simul-
taneouslybecause intermediate files in the
recipes may clash. Hower, aegs prevents
simultaneous build, for this and other reasons.

10.6.5. Bst Implications

Tests will need to knw in which directory the rel-
evant binary files reside. Theest_comman€@eld
of the projectegis.confile may be changed from

Page 109

User Guide

the default

test_command =
"$shell $file_name";

to pass the architecture name to the test

test_command =
"$shell $file_name $arch";

This will make the architecture namealable as
$1 within the shell script.Tests should fail ele-
gantly when the architecture name is notegi, or
should assume a sensible default.

10.6.6. Cioss Compiling

If you are cross compiling to a number of differ-
ent target architectures, you would not use aegis’
heterogeneous deopment support, since it
depends on thenamg2) system call, which

would tell it nothing useful when cross compiling.
In this case, simply write the DMT configuration
file to cross compile to all architectures ueny
build.

10.6.7. FileVersion by Architecture

There is no intention ofver providing the facility
where a project source file mayJeadfferent ver-
sions depending on the architecture, but all of
these versionswverload the same file narfire

The same effect may be acked by naming files
by architecture, and using the DMT to compile
and link those files in the appropriate architecture.

This has the advantage of making it clear that sev-

eral variations of a file exist, one for each archi-
tecture, rather than hidingweeal related but inde-
pendent source files behind the one file name.

10.7. Reminders

This section documents some scriptailable for
reminding users of changes which require their
attention. Thesecripts are installed into the
/usr/local/share/aegis/remindirectory and may
be run bycron(8) at appropriate inteals. You

will almost certainly want to customize them for
your site.

10.7.1. Awaiting Development

The/usr/local/share/aegis/remind/awt_dvlp.sh
script takes a project name agwanent. ltis
placed in the project leadsrer-user crontablt
is suggested that this script be run wegitly
8AM on Monday This script will send all

2 Some other SCM tools provide a repository
with this facility.

Page 110

(blllib/en/user-guide/c10.0.s0)

Aegis

developers of the named project email if there are
ary changes in thawaiting developmerstate in

the named project. No mail is sent if there are no
changes outstanding.

10.7.2. BeingDeveloped

The/usr/local/share/aegis/remind/bng_dvlpd.sh
script takes no guments. lis placed in each

users per-user crontablt is suggested that this
script be run weekl|yat 83M on Monday This

script takes no arguments, and sends email to the
user if thg haveary changes in théeing devel-
opedor being integratedtates. Nanail is sent if
there are no changes outstanding.

10.7.3. BeingReviewed

The/usr/local/share/aegis/remind/bng_rvwd.sh
script takes a project name agwanent. ltis
placed in the project leadsiper-user crontablt

is suggested that this script be run daily at 8AM.
This script will send all reviewers of the named
project emalil if there are grthanges in thbeing
reviewedstate in the named project. No mail is
sent if there are no changes outstanding.

10.7.4. Awaiting Integration

The/usr/local/share/aegis/remind/awt_intgrtn.sh
script takes a project name agwanent. ltis

placed in the project leadsiper-user crontablt

is suggested that this script be run daily at 8BAM.
This script will send all integrators of the named
project emalil if there are grthanges in the
awaiting integratiorstate in the named project.
No mail is sent if there are no changes outstand-

ing.

Peter Miller

Aegis

11. GeographicallyDistributed Development

This chapter describes various methods of collab-
oratively developing software using Aegis, where
the collaborating sites are separated by adminis-
trative domains or en large physical distances.

While mary Open Source projects on the Internet
typify such deelopment, this chapter will also
describe techniques suitable for commercial
enterprises who do not wish to compromise their
intellectual property.

11.1. Introduction

The core of the distribution method is the
aedis{l) command. In its simplest form, the
command

aedist -send | aedist -receive

will clone a change set locallyThis may appear
less than useful (after all, tlaeclon€l) com-

mand already exists) until you consider situations
such as

aedist -send | e-mail | a edist -receive

wheree-mailrepresents the sending, transport and
receiving of e-mail. In this example, the change
set would be reproduced on the e-mail recipient’s
system, rather than locallyGimilar mechanisms

are also possible for web distribution.

11.1.1. RiskReduction

Receiving change sets in the mail, hoare
comes with a number of risks:

* You cant just commit it to your repository,
because it may notven compile.

» Evenifit does compile, you want to run some
tests on it first, to makare it is working and
doesnt break anything.

» Finally, you would alvays check it out, to
make aure it was appropriate, and ditdb
more subtle damage to the source.

While these are normal concerns for distributing
source wer the Internet, and also internally within
companies, theare the heart of the process
employed by Agis. All of these checks and bal-
ances are already present. The nexédte sim-

ply creates a normal Aegis change, and applies
the normal Aegis process to it.

* The change set format is unpacked into a pri-
vate work area, not directly into the reposi-
tory. This is a normal Aegis function.

» The change set is then confirmed to build
against the repositanAll implications

Peter Miller

(blllib/en/user-guide/c10.0.s0)

UserGuide

flowing from the change areercised. Build
inconsistencies will flag the change for atten-
tion by a human, and the change set will not
be committed to the repositorirhis is a nor-
mal Aegis function.

» The change set is tested. If it came accompa-
nied by tests, these are run. Also, vaie
tests fronthe repository are runfest incon-
sistencies will flag the change for attention by
a human, and the change set will not be com-
mitted to the repositoryThis is a normal
Aegis function.

* Once the change set satisfies these require-
ments, it must still be reviewed by a human
before being committed, to validate the
change set for suitability and completeness.
This is a normal Aegis function.

11.1.2. Whatto Send

While there are marrisks involved in receiving
change sets, there also problems in figuring out
what to send.

At the core of Aegis’ design is a transaction.
Think of the source files as rows in a database ta-
ble, and each change-set as a transaction against
that table. The build step represents maintaining
referential integrity of the database, but also rep-
resents an input validation step, as does the
review. And like databases, the transactions are
all-or-nothing afairs, it is not possible to commit
“half” a transaction.

As you can see, Aegis changes are already ele-
gantly validated, recorded and tracked, and ide-
ally suited to being packaged and sent to remote
repositories.

11.1.3. Methodsand Topologies

In distributed systems such as described in this

chapterthere are tw dear methods of distribu-

tion:

» The “push” method has the change set producer
automatically send the change-set to a regis-
tered list of interested consumers. This is sup-
ported by Aegis andedist

» The “pull” method has the change set producer
malke the change setwailable for interested
consumers to come and collect. This is sup-
ported by Aegis andedist

These are tavends of a continuum, and it is pos-
sible and common for a mix-and-match approach
to be taken.

Page 111

User Guide

There are also mgways of arranging he dis-
tribution is accomplished, and maaf the distri-
bution arrangements (commonly called topolo-
gies, when you dwathe graphs) are supported by
Aegis andaedist

» The star topology has a central master reposi-
tory, surrounded by contributing satellite repos-
itories. Thesatellites are almostwdys “push”
model, howeer the central master could be
either “push” or “pull” model.

» The snowflak topology is like a herarchical
star topologywith contributors feeding staging
posts, which eentually feed the master reposi-
tory. Common for large Open Source Internet
projects. Dwads the master repository is
almost alvays “push” model, andveay from
the master is almostvadys “pull” model.

» The network topology is your basic anarchic
autonomous colleate, with change sets flying
about peer-to-peer with no particular structure.
Often done as a “push” model through an e-
mail mailing list.

All of these topologies, and amixture you can

dream up, are supported by Aegis aedist The

choice of the right topology depends on your
project and your team.

11.1.4. TheRest of this Chapter

Aegis is the ideal medium for hosting distributed
projects, for all the ah@ reasons, and the rest of
this chapter describes a number of different ways
of doing this:

O The second section will describevhto per-
form these actions manuallyoth send and
receve, as his demonstrates the method
efficiently, and represents a majority of the
use made of the mechanism.

O The third section will she how to automate
e-mail distribution and receipt. Automated e-
mail distribution is probably the next most
common use.

o The fourth section will she how to configure
distribution and receipt using World Wide
Web servers and browsers.

o The fifth section deals with security issues,
such as validating messages and coping with
duplicate storms.

11.2. ManualOperation

This section describes Wdo useaedistmanu-
ally, in order to send and reeei thange sets.

Page 112

(blllib/en/user-guide/c10.1.s0)

Aegis

11.2.1. ManualSend

In order to send a change set to another site, it
must be packaged in a form which captures all of
the change dtributes and the contents of the
changes files. Thispackage must be compressed
and encoded in a form which will suveithe var-
ious mail transport agents it must pass through,
and then gien to the local mail transport agent.
This is done by a single command

% aedist -send -c number | \
mail joe.blow@example.com
%

All of the usual Aegis command line options are
awailable, so you could specify the project on the
command line if you needed to.

This command will send the sources from the
development directoryif the change is not yet
completed. Thiss useful for collaboration
between deglopers, but it isrt’reviewed and inte-
grated, so hgare.

It is more usual to send a change which has been
completed. Irthis case the version of the file
which was committed is sent. If necesséng
history files will be consulted to reconstruct this
information. Se¢he “Automatic Sentisection,
below, for more discussion of this.

There are manoptions for customizing the e-
mail message sent joe.blow@exam-
ple.com , seeaedis{l) for more information.

11.2.2. Sendindaselines

In order to send the entire contents of the reposi-
tory to someone, you use a very similar com-
mand:

% aedist -send -baseline |\
mail joe.blow@example.com
%

This can be a very large change set, because it is
all files of the project.

11.2.3. Sendindranches

There are times when remotevdepers are not
interested in a blow-by-blo update of your
repository Instead thgwant to hae ypdates

from time to time. In order to send them the cur-
rent state of your aste devdopment branch, in
this example é&xample.4.2, you would use a
command of the form

Peter Miller

Aegis

% aedist -send -p example.4 -c 2 |\
mail joe.blow@example.com
%

Notice hav the correspondence between branches
and change sets ig@oited. Thebaseline of a
branch is the delopment directory of the “super
change” is represents.

Branch change sets &khis are smaller than

whole baselines, becauseytheclude only the

files altered by this branch, rather then the state of
evay file in the project.

11.2.4. ManualReceve

The simplest form of receiving a change set is to
save it from your e-mail program into a file, and
then

% aedist -receive -file filename

...lots of information...
%

wherefilenames where you sad the e-mail
message. Ijour e-mail program is able to write

to a pipe, you can use a simpler form. This exam-
ple uses the Rand Mail Handlessow({1) com-
mand:

% show | aedist -receive
...lots of information...
%

Each of these examples assumes that yoee ha
used the same project name locally as that of the
sender (its gored in the package). If this igrhe
case, you will need to use thproject option

to tell aedistwhich project to apply the change to.

The actions performed aediston receve ae

not quite a mirror of what it does on send. In par-
ticular, send usually extracts its information from
the repositorybut receve does notput the

change set directly into the repository.

On receipt of a change satdistcreates a new
change with its own delopment directoryand
unpacks the change set into it, in much the same
way as a tiange would normally be performed by
a cdevdoper (Indeed, the receér must be an
authorized decloper.)

Once the change is unpacked, it goes through the
usual dgelopment cycle of build, difference and
test. Ifany portion of this fails aedistwill stop

with a suitable error message. If all goes well,
development of the change will end, and it will be
left in thebeing eviewedstate.

At this point, a local reviewer must examine the
change, and it proceeds through the change

Peter Miller

(bl/lib/en/user-guide/c10.1.s0)

UserGuide

integration process as normal.

If there is a problem with the change, it can be
dealt with as you would with grother defectre
change - by desloping it some more. Or you

can email the sender telling them the problem and
useaedbyl) andaencyl) to entirely discard the
change.

11.2.5. GettingStarted

In order to receie a tiange, you must ka a
project to recefe it into. Also,changes tend to be
thedifferencebetween an existing repository and
what it is to becomeYou need some way to get
the starting point of the differences before you
can apply apdifferences. Thisection describes
one way of doing this.

You dart by creating a normal Aegis project in
the usual way That is coered earlier in this User
Guide. Ithelps greatly if you g your local
project exactly the same name as the remote
project. Itdoesnt need the same pathname for
the project directoryjust the same project name.

Once you hee this project created, request the
remote repository send you a “baseline” change,
as described abe. Once you hee receved this,
and it is integrated successfuljypu are ready to
receve and apply change sets. This is an inher-
ently “pull” activity, as e source may ner have
heard of you before. The initial baseline may
arrive by e-mail, or floppy disk, or you may
retrieve it from the web, it all dependswdhe
project is being managed.

You will be warned about "potential trojan horse"
files in the baseline change set. This is normal,
because you are receiving all project configura-
tions file, build files and testlés. All of these
contain eecutable command$at will be exe-
cuted Caveat emptor Make aure you trust the
source.

11.3. Sneakr Net

Another common method of transporting data,
sometimes a quite large amount of it, is to write it
onto transportable media and carry it.

To write a change set onto a flopyou would
use commands such as

% mount /mnt/floppy
% aedist -send -no-base64 \
-0 /mnt/floppy/ change set
% umount /mnt/floppy
%

The abee mmmand assumes the flopis pre-

Page 113

User Guide

formatted, and that there is a user-permitting line
in the/etc/fstabfile, as is common for many

Linux distributions. Thechangesetcan be any
filename you like, but is usually project-name and
change-number related.

It takes a very sizable change set to fail to fit on a
1.44MB floppy, because theare compressed

(and change sets exceeding 8MB of source are
rare, &en for huge projects). Theno-base64
option is used towmid the MIME base 64 encod-
ing, which is necessary for e-mail, not not neces-
sary in this case. The regeisde will automati-
cally figure out there is no MIME base 64 encod-
ing.

Reading the change set is just as simple, as it
closely follows the other commands for receiving
commands sets.

% mount /mnt/floppy

% aedist -rec -f /mnt/floppy/
...lots of output...

% umount /mnt/floppy

%

change set

This technique will work for anof the disks
available these days including floppies, Zip, Jaz,
etc

11.4. Automatic Operation

This section describes Wwdo useaedistto auto-
matically send change sets via e-mail.

11.4.1. Sending

Change sets can be sent automatically when a
change passes igi@tion. You do this by setting
theintegrate_pass_notify _commafidid of the
project attributes.

In this example, the “example” project sends all
integrations to all the addresses ongkam-
ple-developers mailing list. (The mailing
list is maintained outside of Aegis.g.by Major-
domo.) Therelevant attribute (edited by using the
aepdl) command) looks lithis:
integrate_pass_notify_command =
"aedist -p $project -c $change |\
mail example-users";

Please note that project attributes are inherited by
branches when tlgeare created. If you don't

want all branches to broadcast all changes, you
need to remember to clear this project attribute
from the branctonce the branch has been created.
Alternatively, use thebversion substitution to
decide who to send the change to.

Page 114

(blllib/en/user-guide/c10.3.s0)

Aegis

11.4.2. Receiing
write this section

You need to set up an e-mail alias, with a wrapper
around it - you probablgion’t want "daemon" as
a regstered deeloper.

While aedis{1) makes eery attempt to spot
potential trojan attacks, you realhgally want

PGP validation (or similar industrial strength digi-
tal signatures) before you accept this kind of
input.

11.5. World Wide Web

This section describes Wwdo useaeget(1) and
aedis{l) to transport change sets using the World
Wide Web This requires configuration of the

web server to package and send the change sets,
and configuration of the browser to racemd
unpack the change sefgou can also automati-
cally track a remote site,fefiently downloading
and applying n& change sets as theppear.

11.5.1. Sever

Aegis has a read-only web interface to its
database, it is a web server CGl iraed. Ifyou
are running Apache, or similal you have © do
is copy (or symlink, if you hae gymlinks
enabled) théustr/local/bin/aget file into the web
server'scgi-bindirectory For example, the
default Apache install would need the following
command:

In -s /usr/local/bin/aeget /var/iwww/cgi-bin/aeget

11.5.2. Bowser
You need to set the appropriate mailcap erdmy
thatapplication/aegis-change-set is

handled byaedist --receive
Edit the/etc/mailcapfile, and add the lines

Aegis
application/aegis-change-set;/usr/local/bin/aedist -receive -f %s

You may need to restart your web browser for this
to tale dfect.

11.5.3. Hands-Fee Tracking

Clients of sites using a web senarch as the
various deelopers in an open sourec project, it is
possible to automatically "replay” change sets on
the server which ha& rot yet been incorporated at
your site.

The command

Peter Miller

Aegis

aedist --replay -f name-of-web-server

will automatically download anremote change
sets not present in the local repositoitydown-
loads them by using theedis{l) command. It
uses commands of the form

aedist --receive -f url-of-change-set

to download the change sets, whichéh@ go
through all of the usual Aegis process before
vecoming part of your local repositoryhis
includes code rewe unless you hee onfigured
thedevelop_end_actiofield of the project con-
figuration to beyoto_awaiting_development

If you add this command toaiontab(1) entry,
you can checto se if thee are change ®ts to
synchronize with once a day however often
you set the line to run.

11.6. Security

This section deals with security issues. Security
isn't just “keep the bad guys out”, it actually cov-
ersavailability, integrity andconfidentiality
Availability:
refers to the system beingailable for
use by authorised users. Denial of ser-
vice and crashes are examples of bad
things in this area.
Integrity:
refers to the system being in a known
good state. Corrupted change sets and
un-buildable repositories are examples
of bad things in this area.

Confidentiality:
refers to the system beingailable only
to authorised usergzor mary Open
Source projects, this idra large con-
cern, but for corporate users of Aegis,
non-disclosure of change-sets as they
cross the Internet is a serious require-
ment.

As you can see, a strategy of “keep the bad guys
out” is necessanput not suficient, to satisfy
security.

This section ceers the abee ®curity issues, as
applied to the use @fedistto move change sets
around.

11.6.1. Tojan Horses

“A Trojan horse is an apparently useful program
containing hidden functions that can exploit the
privileges of the user [running the program], with
a resulting security threatA Trojan horse does

Peter Miller

(blllib/en/user-guide/c10.4.s0)

UserGuide

things that the program user did not int&id

In order to forestall this threaedistwill cease
development of the change if it detects the poten-
tial for a Trojan horse. These include...

» Changing the projeaegis.confile. Thisfile
contains the build command and the difference
commands, both of which would be run before
a reviewer had a chance to confirm yheere
acceptable.

» Changing aw of the files named in thio-
jan_horse_suspefditeld of the project
aegis.confile. Thislets you cwoer things like
the build tools configuration file €.g.the
Makefile or the cookbook), and yascripts or
code generators which would be run by the
build.

This isnt exhaustve protection, and it depends on
keeping thetrojan horse suspedist up-to-date.

(It accepts patterns, sodtot too onerous.or
better protection, you need to validate the sender
and the message.

11.6.2. PGP

PGP can be used to validate that the source of a
change set distribution is really someone you
trust.

anyone want to advise me what to put here?

11.6.3. Socerer’'s Apprentice

In a push system, with a central master server and
a mwllection of contributors, all of which are using
automatic send, as describedah@ potential
explosion of redundant messages is possible:

» Contributor integrates a change, which is dis-
patched to the master server.

» Maintainer integrates the change set into the
master repository.

» Master repository automatically dispatches the
change set to all of the contributors.

» Each of the contributors reses and integrates
the change, each of which are dispatched to the
master server.

» The master server is inundated with change sets
it already has.

» Ifthese change sets were to be integrated, the
storm repeats, growing exponentialiyesy
time it goes around the loop.

26 summers, Rita CSecue Computing Theats
and SafeguarddMcGraw-Hill, 1997.

Page 115

User Guide

To prevent this,aedistdoes seeral things...

» Before the change is built, aecpu
--unchangeds run. If there is nothing left, the
change is abandoned, because you alreagy ha
it. (Thisdoesnt aways work, because propa-
gation delays may try teeversea uubsequent
local change.)

* When a change set is sent, an RFC 822 style
header is added to the description. This
includes From and Date. When a change set is
receved, a Receied line is added.Too many
Receved lines causes the change set to be
dropped - for a star topology the maximum is
2. (Thisdoesnt always work, because the
description could be edited to rip iff @Qan.)
(This doesrt’ always work, because the main-
tainer may edit it in some ways before comit-
ting it, and forget to rip éf{enough of) the
heade) (Thisdoesnt always work, because
hierarchical topologies will group change sets
together) (Thisdoesnt always work, because
a baseline pull will group change sets together.)

» Set the description to indicate it was reesi
by aedist? Use this to influence the decision to
send it of agan at integrate pass? How?

11.7. Ratches

In the open source communipatches are com-
mon way of sharing enhancements to software.
This was particularly common before the World
Wide Web, and usenet was the more common
medium of distrilntion. Ratches also va the
advantage of being fairly small and usually tans-
portable by email with f& problems.

11.7.1. Send

If you are participating in an open source project,
and using Aegis to manage yourvdepment, the
aepatt —sendcommand may be used to con-
struct a patch to send to the othevellepers.

It is very similar in operation to theedis{1)
command, howeer it is intended for non-Aegis-
using recipients.

To nd a change to someone (a completed
change, or one in progress) simply use a com-
mand such as

% aepatch -send -c number | \
mail joe.blow@example.com
%

to send your change as a patch. Note that it will
be compressed (using GNU Zip) and encoded
(using MIME base 64), which produces small

Page 116

(blllib/en/user-guide/c10.5.s0)

Aegis

files which are going to sume email transport.

11.7.2. Recaie

The simplest way of receiving a patch and turn it
into a change set is tov&it from your e-mail
program into a file, and then

% aepatch -receive -file filename

...lots of information...
%

wherefilenames where you sad the e-mail
message. Ijour e-mail program is able to write

to a pipe, you can use a simpler form. This exam-
ple uses the Rand Mail Handlessow({1) com-
mand:

% show | aepatch -receive
...lots of information...
%

Each of these examples assumes that yoe ha
already set the project name, eitheragaicon(b)
orae_g1), or you could use theproject option.

The actions performed aepatchon receve ae

not quite a mirror of what it does on send. In par-
ticular, send usually extracts its information from
the repositorybut receve does notput the

change set directly into the repository.

On receipt of a change sagpatchcreates a new
change with its own delopment directory,

copies the files into it, and applies the patch to the
files. Therecever must be an authorized k-

oper.

Once the patch is applied, it goes through the
usual dgelopment cycle of build, difference and
test. Ifany portion of this failsaepatchwill stop
with a suitable error message. If all goes well,
development of the change will end, and it will be
left in thebeing eviewedstate.

At this point, a local reviewer must examine the
change, and it proceeds through the change inte-
gration process as normal.

If there is a problem with the change, it can be
dealt with as you would with grother defectre
change - by desloping it some more. Or you

can email the sender telling them the problem and
useaedbyl) andaencyl) to entirely discard the
change.

11.7.3. Limitations

Despite a great similarity of command line opera-
tions and operation, treepatchcommand should
not be thought of as an egalent for theaedist
command, or a replacement for it.

Peter Miller

Aegis

The information provided bgedist —sends suf-
ficiently complete to recreate the change set at the
remote end. No information is lost. In contrast,
theaepatt —sendcommand is limited to that
information a patch file (see tpatch(1) com-

mand, from the GNU Difutils). Thereis no
guarantee that theepatt —sendoutput will be

given to aepatt —receive it must work with

patch(1), and similar tools.

Corversely there is no guarantee that the input to
aepatt —receivecame fromaepatt —send It

can and must be able to cope with the outout of a
simplediff -r -N -c command, with no additional
information.

All this means, usaedistwherever possible. The
aepatchcommand is to simplify and streamline
communication with non-Aegis delopers.

Peter Miller (bl/lib/en/user-guide/c12.0.s0)

UserGuide

Page 117

User Guide

12. Further Reading

This chapter contains information about books,
articles or web sites relant to some aspect of
Aegis or using Agis. Theseaeferences should
not be taken as endorements.

If I' ve missed a good reference, it ispérsonal,
but I can’t and haren’t read &erything out there.
Email me the information and I'll add it to this
chapter (no advertising, please).

12.1. Softwae Configuration Management

Eaton, D. (1995), Configuration Management
Frequently Asked Questions, http://www.dav-
eeaton.com/scm/CMIE).html
This is an essential first-stop for infor-
mation about SoftwarConfiguration
Management. Ithas an excellent book
list.

Pool, D., CM Todayhttp://www.cmtoday.com/
This is a configuration mamg@ment por-
tal site with news and other links.

12.2. Reiewing

Baldwin, J. (1992), An Abbreviated C++ Code
Inspection Checkilist,
http://www?.ics.havaii.edu/"john-
son/FTR/Bib/Baldwin92.html
This web pge talks about C++ code
inspections with some useful gestions
about how to conduct (rather formal)
revews and some for C++ constructs to
watd out for.

Page 118 (bl/lib/enfuser-guide/cA.0.s0)

Aegis

Peter Miller

Aegis

13. Appendix A: New Project Quick Reference

For those of you too impatient to read a whole
great big document about\ado use the aegis
program, this appendix\gs a qiick look at how
to place a project under aegis.

The style here is an itemized list. It does not try
to be exhauste. For exact details on moto use

the various aegis commands, you should see the
manual pages, ditto for the formats and contents
of some files.

Probably the quickest start of all is to gam
already existing project. The project used in
chapter 2 is complete, assuming you use the
authors "cook" dependencmaintenance tool.
The entirety of this example may be found, if
slightly obfuscated, in the aegis source file
test/00/t0011a.sHistributed with aegis.

13.1. Create the Project

Theaenprcommand is used to create a project.
You must supply the name on the command line.
The name should be ten characters or less, six
characters or less if you want version numbers
included.

The user who creates the project is the owner of
the project, and is set as the administraiidre
default group of the user who created the project
is used as the projestyyoup.

You may want to hee a ser account which owns
the project. You must create the project as this
user and then use thaenaandaeracommands

to add an appropriate administratard remae

the owning user as an administratéfter this,

the password for the owning user may be dis-
abled, because the aegis program will, at appro-
priate times, set file ownership to reflect project
ownership or recute commands on behalf of the
project ownemsthe project owner.

13.1.1. Addthe Staff

Theaendcommand is used to addvaopers.
Theaenrvcommand is used to add reviewers.
Theaenicommand is used to add integrators.
These commands may only be performed by a
project administrator.

You will still have o do this, even if the person
who created the project will be among these peo-
ple, or &en be dl of these people.

13.1.2. Ppject Attributes

Theaepacommand is used to change project
attributes. Thesattributes include the description

Peter Miller

(bl/lib/en/user-guide/cA.0.s0)

UserGuide

of the project, and booleans controlling whether,
for example, declopers may revie their own
work.

The project attributes file is described in the
aepatt(5) manual entry.

13.2. Create Change One

Theaenccommand is used to create a new
change. Wu will need to construct a change
attributes file with yourdvarite text editor before
running this command.

The change attributes file is described in the
aecatt(5) manual entry.

13.3. De&elop Change One

This is the most grueling step. Indeed, the inte-
gration step will probably xeal things you
missed, and you may return to theing devel-
oped

state seeral times.

One of the people you nominated as eetiper
will have b use theaedbcommand to commence
development of the first change. Tlaecdcom-
mand can be used to change directory into the
just-created deslopment directory.

Add files to the change. Treenfcommand is
used to create mefiles. If you dont useaenf
then the aegis program has no way of knowing
whether that file lying there in the dlopment
directory is significant to the project, or just a
shopping list of the groceries you forgot to buy
yesterday.

One particular ng file which mustbe created by
this change is the project configuration file, usu-
ally calledaegis.conbut can be named something
else. Thidile tells Aegis what history mechanism
you wish to use, what dependgmaaintenance
command to use, what file difference tools to use,
and much more. Thaepconf5) manual entry
describes this file.

If you are going to use the "cook" dependency
maintenance tool, anothenméle you will need
to create in this change is the "Howto.cook" file.
Some other tool will want some other rules file.

You probably hae a pototype or some other
"seed" you hee oort-of working. Createnew files
for each source file arttiencopy the files from
wherever they are naw into the deelopment
directory.

Use theaebcommand to build the change. It will
need to build cleanly before it can advance to the

Page 119

User Guide

next step.

Use theaedcommand to difference the change. It
will need to difference cleanly before it can
advance to the next step.

Use theaentcommand to add metests to the
command. lwill need to hae tests before it can
advance to the next step.

Most existing projects donhaveformal tests.
These tests will form a regression test-bed, used
to male aure that future changesvee compro-
mise existing functionality.

Use theaetcommand to test the change. It will
need to test cleanly before it can advance to the
next step.

Once the change builds, differences and tests
cleanly use theaedecommand to end delop-
ment.

13.4. Reiew The Change

One of the people nominated as reviewers will
have © run theaerpasscommand to say that the
change passed revie

The aegis program does not mandatemticu-
lar reviav mechanism: you could use a single
peer to do the rewe you could use a panel, you
could set the project so thatvéopers may
review their own work effectiely eliminating the
review step. Inprojects with as f& as twvo peo-
ple, it is avays beneficial for someone other than
the deeloper to revigv changes. Its even bene-
ficial for the deeloper herself to revie the next
day.

Should a reviewer actually want$eethe
change, thaecdcommand may be used to
change directory to the ddopment directory of
the change. The difference files all end with a
"comma D" sufix, so the

more ‘find . -name "*,D" -print |
sort’

Aegis

command.

Theaerfail command may also be used by
reviewers to fail reviews and return a change to
the deeloper for further work; the reviewer must
supply a reason for the change history to record
for all time. Similarly theaedeucommand may
be used by the geloper to resume aelopment

of a change at srtime before it is integrated; no
stated reason is required.

13.5. Integratethe Change

A person nominated as an project integrator then
integrates the change. Thiwvalves making a

copy of the integration directorgpplying the
modifications described by the change to this
integration directorythen building and testing all
over agan.

This re-build and re-test is to ensure that no spe-
cial aspect of the @elopers environment influ-
enced the success up to this point, such as a
unigue environment variable setting. The re-build
also ensures that all of the files in the baseline,
remembering that this includes source files and all
other intermediate files required by the build pro-
cess, remain consistent with each aqtteat the
baseline is self-consistent. The definition of the
baseline is that it passes its own tests, so the tests
are run on the baseline.

Use theaeibcommand to begin integration.

Theaebcommand is used to build the integration
copy of the change.

Theaetcommand is used to test the integration
copy of the change.

On later changes, the integration may also require
theaet -blcommand to test the change against the
baseline. Thisests ensures that the tésts

against the baseline. This failure is to ensure that
bug fixes are accompanied by tests which repro-
duce the bug initiallyand that the change has

fixed it. New functionality naturally, will not be

command may be used to search them out and see present in the old baseline, and so tests of new

them. Thisis probably fairly useless for the first
change, but is vital for all subsequent changes.
There is a supplied alias for this command, it is
aedmoreand there is a similaredlesslias if you
prefer thdesg1) command.

There are some facts that a reviekeows

because otherwise the change would not be in the
"being reviewed" state: ¢ the change compiles
cleanly « the change passes all of its tests. Other
information about the change may be obtained
using the "change_details" variation of td

Page 120

(bl/lib/en/user-guide/cA.0.s0)

functionality will also fail against the old base-
line.

Later changes may alsovsathe regression tests
run, using theet -egcommand. Thigan be a
very time-consuming step for projects with a long
history, and thus a large collection of tests. The
aet -sugestcommand can also be used to run
"representatie” sets of existing tests, but a full
regression test run is recommended before a
major release, pray, weekly if it will complete
over the weekend. Thiscommand is also

Peter Miller

Aegis

awailable to deelopers, so that tlyehavefewer
surprises from irate integrators.

The integrator may use tlaeifail command to

return a change to its ddoper for further work;

a reason must be supplied, and should include rel-
evant excerpts from the build log in the case of a
build failure (not thewholelog!), or a list of the

tests which failed for test failures.

Theaeipasscommand may be used to pass an
integration. Wherthe change passes, the file his-
tories are updated. In the case of the first change,
the history is created, and problems with the
project configuration files history commands will

be revealed at this point. The integration won't
pass, and should be failed, so that thesldper

may effect repairs. There are rarely problems at
this point for subsequent changes, except for disk
space problems.

Once the history is successfully updated, aegis
renames the integration directory as the baseline,
and throws the old baselineay. The deelop-

ment directory is deleted at this time, too.

13.6. Whatto do Next

There, the first change is completed. The whole
cycle may nav be repeated, starting at "Create
Change," for all subsequent changes, with very
few differences.

It is recommended that you read thleange
Development Cycle

chapter for a full worked example of the first four
changes of an example project, including some of
the twists which occur in real-world use of aegis.

Remembertoo, the definition:
aegis(ee.j.iz)n. a protection, a defence.

It is not alvays the case that aegis exists to make
life "easier" for the software engineers. The goal
is to hare a laseline which avays "works",

where "works" is defined as passing all of its own
tests. Wheneer possible, the aegis program
attempts to be as helpful and as unintreiss
possible, but when the "working" definition is
threatened, the aegis program intrudes as neces-
sary (Example: you cam'do an ntegrate pass
without the integration cgpbuilding success-

fully.)

All of the "extra work" of writing tests is a long-
term win, where old problems vex agan reap-

pear All of the "extra work" of reviewing

changes means that another pair of eyes sees the
code and finds potential problems before they

UserGuide

manifest themselves in shipped product. All of
the "extra work" of integration ensures that the
baseline aliays works, and is alays self-consis-
tent. All of the "extra work" of having a baseline
and separate delopment directories allows mul-
tiple parallel deelopment, with no inter-desl-

oper interference; and the baselingagis works,

it is never in an 'in-between" state. In each case,
not doing this "extra work" is a false economy.

Peter Miller (blflib/en/user-guide/cA.0.s0) Page 121

User Guide

14. Appendix B: Glossary

The following is an alphabetical list of terms used
in this document.

administrator
Person responsible for administering a
project

awadting_development
The state a change is in immediately after
creation.

awadting_integration
The state a change is in after it has passed
review and before it is integrated.

awating review
An optional state a change is in after it is
developed, but before someone has chosen
to review it..

baseline
The repository; where the project master
source is kept.

being deeloped
The state a change is in when it is being
worked on.

being integrated
The state a change is in when it is being
integrated with the baseline.

being reviewed
The state a change is in after it ivee
oped.

change
A collection of files to be applied as a sin-
gle atomic alteration of the baseline.

change number
Eachchangehas a uniqgue number identify-
ing it.

completed
The state a change is in after it has been
integrated with the baseline.

delta number
Each time the@ei(1) command is used to
start integrating ahangeinto thebaselinea
unigue number is assigned. This number is
the delta numberThis allows ascending
version numbers to be generated for the
baseline, independent of change numbers,
which are inevitably integrated in a differ-
ent order to their creation.

dependengcmaintenance tool
A program or programs external to aegis
which may be gien a %t of rules for how
to eficiently tale a £t of source files and

Page 122

(bl/llib/en/user-guide/cB.0.s0)

Aegis

process them to produce the final product.

DMT
Abbreviation of Dependegdvaintenance
Tool.

develop_begin
The command issued to @k dhange from
theawaiting developmerstate to thdeing
developedtate. Thehange will be
assigned to the user whreeuted the com-
mand.

develop_begin_undo
The command issued to @k dhange from
thebeing developestate to th@waiting
developmergtate. Ay files associated
with the change will be remved from the
development directory and their changes
lost.

develop_end
The command issued to @k dhange from
thebeing developestate to thdeing
reviewedstate, or optionally to thawaiting
reviewedstate. Thehange must be known
to build and test successfully.

develop_end_undo
The command issued to @k dhange from
thebeing eviewedstate back to theeing
developedtate. Theeommand must be
executed by the original deloper.

developer
A member of stdfallowed to deelop
changes.

development directory
Each change isggn a inique deelopment
directory in which to edit files and build
and test.

history tool
A program to see and restore previous ver-
sions of a file, usually by storing edits
between the versions forfiefiengy.

integrate_pass
The command used to &k dhange from
thebeing integratedtate to theompleted
state. Thehange must be known to build
and test successfully.

integrate_begin
The command used to &k dhange from
theawaiting integratiorstate to thdeing
integratedstate.

integrate_begin_undo
The command used to &k dhange from
thebeing integratedtate to th@waiting

Peter Miller

Aegis

integrationstate.

integrate_fail
The command used to &k dhange from
thebeing integratedtate back to theeing
developedtate.

integration
The process of merging tib@selinewith
thedevelopment directortp form a new
baseline. Thisncludes building and testing
the merged directoryefore replacing the
original baselinewith the nev merged ver-
sion.

integration directory
The directory used duririgtegrationto
merge the existingaselinewith a change’s
development directory

integrator
A staff member who performimtegrations.

new_change
The command used to createvehanges.

new_change_undo
The command used to degtrchanges.
review_begin
The command used to &k dhange from
theawaiting eview state to thdeing
revewedstate.

review_fail
The command used to &k dhange from
thebeing eviewedstate back to theeing
developedstate.

review_pass
The command used to &k dhange from
thebeing evewedstate to thawaiting
integrationstate.

reviewer
A person who may revieshangesand
either pass or fail themgview_pasor
review_fail respectiely).

state
Eachchangeis in one of seen dates:
awaiting developmenbeing developed
awaiting eview, being eviewed awaiting
integration being integratesbr completed

state transition
The event resulting in a&hangechanging
from one state to another.

Peter Miller (bl/lib/enfuser-guide/cB.0.50)

UserGuide

Page 123

User Guide

15. Appendix D: Why is Aegis Set-Uid-Root?

The goal for aegis is to i@ a poject that

"works". Therds a fairly long discussion about

this earlier in this User Guide. One of the first
things that must be done to ensure that a project is
not subject to mystery break downs, is to make
sure that the master source of the project cannot
be in aly way altered in an unauthorized fashion.
Note this says "cannot", a stronger statement than
"should not".

Aegis is more complicated than, sast-group-id
RCS, because of the Wawith set-group-id: the
baseline is writable by the entirevélpment
team, so if a desloper says "this delopment
process stinks" he cannadys bypass it, and write
the baseline directlyThis is averycommon
source of project disaster3o prevent this, you
must hae the baseline read-onlgnd so the set-
group-id trick does not ark. (Theidea here is
that there isio way to bypass the QA portions of
the process. Sure, set-group-id will ymet acci-
dental edits on the baseline, if thevélepers are
not members of the group, but it does noveme
deliberatecheckin of unauthorized code. Again,
the emphasis is on "cannot" rather than "should
not".)

Also, using the set-group-id trick, you need multi-
ple copies of RCS, one for each project. Aegis
can handle manprojects, each with a different
owner and group, with a single set-uid-root
executable.

Aegis has no internal model of securityuses
UNIX security and so becomes each user in turn,
SOUNIX can determine the permissions.

15.1. Examples

Here are a f@ examples of the uid changes in
common aegis functions. Unix "permission
denied" errors are not shown, but it should be
clear where thewould occur.

new change (aenc):
become imoking user and read (edit) the
change attribute file, validate the attribute
file, then become the project owner to write
the change state file and the project state
file.

develop begin (aedb):
become the project owner and read the
project state file and the change state file, to
see if the change exists andvsikable for
development, and if the woking user is on
the deeloper access control list. Become

Page 124

(bl/lib/en/user-guide/cD.0.s0)

Aegis

the invoking user but set the default group
to the project group, and mak cevdop-
ment directory Become the project owner
again, and update the change state file to
say who is degloping it and where.

build (aeb):
become the project owner to read the
project and change state files, check that the
invoking user is the deloper of the
change, and that the change is inlibng
developedtate. Becoméhe irnvoking user,
but set the default group to the project
group, to ivoke the build command.
Become the project owner to update the
change state to remember the build result
(the exit status).

coyy file into change (aecp):
become the project owner to read the
project and change staite§. Checkthat
the invoking user is the deloper and that
the change is in theeing developesitate,
and that the file is not already in the
change, and that the file exists in the base-
line. Becomehe invoking userbut set the
default group to the project group, and copy
the file from the baseline into thewa#op-
ment directory Become the project owner,
and update the change state file to remem-
ber that the file is included in the change.

integrate fail (aeifail):
become the project owner to read the
project and change staite§. Checkthat
in invoking user is the integrator of the
change, and that the change is inlibng
integratedstate. Becoméhe integrator to
collect the integrate fail comments, then
become the project owner to delete the inte-
gration directorythen become the de-
oper to mak the deelopment directory
writable agin. Therbecome the project
owner to write the change state file, to
remember that the change is back in the
being developedtate.

integrate pass (aeipass):
become the project owner to read the
project and change staite§. Checkthat
in invoking user is the integrator of the
change, and that the change is inlibng
integratedstate. Mak the integration
directory the ne baseline directory and
remove the old baseline directarywrite
the change and project states to reflect the
new baseline and the change is in the

Peter Miller

Aegis UserGuide

completedstate. Therbbecome the del- probably a Bad Thing.
oper to remee the derelopment directory.

All the mucking about with default groups is to
ensure that the reviewers, other members of the
same group, ha acess to the files when it
comes time to revie the change. The umask is
also set (not shown) so that the desired lef
"other" access is enforced.

As can be seen, each of the uid change either (a)
allowsuNix to enforce appropriate securityr (b)
USesUNIX security to ensure that unauthorized
tampering of project files cannot occlach

project has an owner and a group: members of the
development team obtain read-only access to the
project files by membership to the appropriate
group, to actually alter project files requires that
the deelopment procedure embodied by aegis is
carried out.You could have a engle account (not

a wser’s account, usuallyfor obvious conflicts of
interest) which owns all project sources, or you
could hae me account per projecYou can hae
one group per project, if you danvant your var-
ious projects to be able to see each oshaork,

or you could hee a éngle group for all projects.

15.2. Souce Detalils

For implementation details, see the
0s_become * functions in theegis/os.dile.
Theos_become_init function is called very
early inmain , in theaegis/main.dile. Afterthat,
all accesses are bracketeddsy become and
0s_become_undo function calls, sometimes
indirectly asproject_become *or
user_become *, etc, functions.You need to
actually become each usbecause root is not
root over NFS, and thushown tricks do not
work, and also because duplicating kernel permis-
sion checking in aegis is a little non-portable.

Note, also, that most system calls go via the inter-
face described in thaegis/glue.Hile. Thisiso-
lates the system calls fonix variants which do
not hare theseteuid function, or do not hae a
correctly working one. The code in the
aegis/glue.dile spawns "proxy" process which
uses thesetuid function to become the user and
stay that way If theseteuid function is &ail-
able, it is used instead, making aegis more
efficient. Thisisolation, howeer, makes it possi-
ble for a system administrator to audit the aegis
code (for trojans) with some degree of confi-
dence. Systernalls should be confined to the
aegis/l@.c, aegis/pger.c, aegis/os.@and
aegis/glue.diles. Systentalls anywhere else are

Peter Miller (bl/lib/enfuser-guide/cl.0.so) Page 125

User Guide

16. Appendix I: Internationalization and
Localization

The Aegis source code has been internationalized,
which is the process of modifying the original
source code to permit error messages and other
text to be presented in a language other than the
authors rative English. Thiswas a krge and

often painful task, but it allows a degree of cus-
tomization of error messages and other
behaviours which would not ta keen otherwise
possible. (lalso makes the job of running a
spell-checker eer the error messages signifi-
cantly easier.)

Localization is the process of translating the error
messages and other text into various different lan-
guages or nationalities. This appendix is primar-
ily aimed at localizers of Aegis.

16.1. The“.po” Files

The “lib/len/LC_MESSAGES” directory in the
source tree contains the various message files
needed to localize Ags. You will find a number

of “.po” files in this directorywhich translates
“programmer cryptic” into EnglishYou will see

that each message has a comment attached,
describing the message and the context in which it
is used. May messages also ¥xa “substitutions”
described, which are strings similar to shell vari-
ables which may be substituted into the message -
such as the file name for messages whisle ha
something to do with a specific file.

The substitution mechanism is the same one as is
used for the various commands in the project
aegis.confile, and so all of the substitutions
described iraesul§5) are aailable to the transla-

tor. Note frequent use of th@ural substitution,
which allows grammatically correct error mes-
sages to be issued when faced with the singu-
lar/plural dichotomy Other substitutions include
the login name of thexecuting usernames of
projects, number and state of changes, etc.

Ideally, the task for a translator is to &athe.po

files and translate thasgstr lines into the
appropriate language. The job will, of course, not
be that simple and so references into the code
have been included, so that you can read the code
should context be necessary to correctly translate
the message.

16.2. Checkingthe Code

There are a number oélwords you need to va
for thexgettexiprogram when extracting message
strings. Thegettext keyword is not used

Page 126

(bl/lib/en/user-guide/cl.0.s0)

Aegis

directly, because of the substitution mechanism
wrapped around it.

i18n error_intl
io_comment_append afal_intl
report_error erbose_intl
report_error gram_error

rpt_value_error

In general, thetc/Howto.cookile causes the
messages to be extracted irttBn-tmp/*.pofor
checking during the build.

16.3. Translators Welcome

If youare able to translate the error messages into
another language, please contact Peter Miller
<millerp@canb.auug.org.au> and he will tell you
how it is done. (Actually he’ll point you to this

part of the User Guide. :-)

To translate the error messages, look up the two-
letter abbreviation
(http:/www.w3.org/WAI/ER/IG/ert/is0639.htm)

of the language you are going to translate the
error messages to. The rest of these instructions
will call it xx.

In the source tree, you will see a directory called
lib/en/LC_MESSAGE®hich contains somgo

files. Thesare the text form of the message cata-
logues. Yu can viev them with a simple text
editor.

Create a ng directory for your translations, and
copy the English messages into it.

mkdir lib/ xXLC_MESSAGES
cp lib/en/LC_MESSAGES/*.po \
lib/ x¥LC_MESSAGES

Now you need to edit each of the

lib/ xxLC_MESSAGES/*.po files, replacing
themsgstr strings with suitable translations.
Leave themsgid strings and the comments
untranslated. Theswe text files, you can edit
them with a simple text editoGNU Emacs has a
PO mode to makthis easier.

The GNU Gettext (http://www.gnu.org/direc-
tory/gettext.html) sources @ fairly good docu-
mentation (http://www.gnu.org/manual/get-
text/index.html) about this process.

If you want to test your translations, you need to
"compile” the text into the binary form used by
thegettext() system call. This is done using
themsgfm{l) program from the GNU Gettext
package. @ se your ne translations in action,
you create a

/usr/local/lib/aegis/ xXLC_MES-

Peter Miller

Aegis

SAGESdirectory and arrange for timesgfmg1)
output to be placed in it. Some of the messages
are hard to triggedon’t expect complete test cov-
erage.

There are almost 600 error messages. If yera
age 1 messageey 2 minutes, this is approxi-
mately 20 hours ark. TheGerman translation,
for example, required around 12 hours.

When you are done translating, email the results
to Peter Miller <millerp@canb.auug.org.au> and
they will be included in the next release of Aegis.

Peter Miller (bl/lib/en/user-guide/main.ms)

UserGuide

Page 127

User Guide Aegis

Page cxxviii (bl/lib/en/user-guide/main.ms) Peter Miller

